Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (2) : 24-31     DOI: 10.6046/gtzyyg.2019.02.04
|
Hyperspectral image classification based on dominant sets clustering and Markov random fields
Haicheng QU, Yue GUO(), Yuanyuan WANG
College of Software, Liaoning Technical University, Huludao 125105, China
Download: PDF(4806 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to make full use of the abundant spectral information and spatial information of hyperspectral images, this paper proposes a hyperspectral image classification algorithm based on dominant sets clustering and Markov random fields. First of all, the local spectral-spatial consistency of hyperspectral images is analyzed, the measurement of both band informativeness and independence is completed, an un-directed weighting graph is constructed and dominant sets clustering method is used to select the optimal band subset which preserves good structure information. Secondly, the local spectral-spatial consistency of adjacent pixels after the band selection is established by using Markov random fields, which makes the context information of the image space effectively used. Finally, according to the Bayesian theorem, the hyperspectral image classification problem is transformed into the maximum posterior probability which can solve the problem and yield the classification results. Experiments on two datasets, i.e., Indian Pines and Pavia University, show that this algorithm can achieve higher overall classification accuracy and Kappa coefficient than other similar algorithms.

Keywords dominant sets      clustering      band selection      Markov random fields      hyperspectral image      classification     
:  TP751  
Corresponding Authors: Yue GUO     E-mail: GY_Gina@163.com
Issue Date: 23 May 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haicheng QU
Yue GUO
Yuanyuan WANG
Cite this article:   
Haicheng QU,Yue GUO,Yuanyuan WANG. Hyperspectral image classification based on dominant sets clustering and Markov random fields[J]. Remote Sensing for Land & Resources, 2019, 31(2): 24-31.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.02.04     OR     https://www.gtzyyg.com/EN/Y2019/V31/I2/24
Fig.1  Flow chart of DSSM algorithm
Tab.1  Ground truth categorization information of Indian Pines dataset
Tab.2  Ground truth categorization information of Pavia University dataset
Fig.2  Overall accuracies of DSSM algorithm with different number of features
Fig.3  Classification results of different algorithms on Indian Pines dataset
Fig.4  Classification results of different algorithms on Pavia University dataset
数据集 评价指标 SVM算法 DS-SVM算法 DS-KNN算法 DS-RT算法 DSSM算法
Indian Pines OA/% 78.35 83.36 73.31 71.69 93.19
Kappa 0.751 3 0.809 4 0.694 9 0.746 8 0.921 9
Pavia University OA/% 94.27 92.08 84.84 85.70 97.80
Kappa 0.923 9 0.894 4 0.745 7 0.748 9 0.973 0
Tab.3  Overall accuracies of different algorithms
[1] 叶珍, 白璘, 粘永健 . 基于Gabor特征与局部保护降维的高光谱图像分类算法[J]. 光学学报, 2016,36(10):504-513.
[1] Ye Z, Bai L, Nian Y J . Hyperspectral image classification algorithm based on Gabor feature and locality-preserving dimensionality reduction[J]. Acta Optica Sinica, 2016,36(10):504-513.
[2] 侯榜焕, 张耿, 王飞 , 等. 结合多尺度空间滤波和层级网络的基于结构保持的高光谱波段选择[J]. 光子学报, 2017,46(5):179-188.
[2] Hou B H, Zhang G, Wang F , et al. Feature selection based on structure preserving for hyperspectral image combination with multi-scale spatial filtering and hierarchical network[J]. Acta Photonica Sinica, 2017,46(5):179-188.
[3] Li J, Zhang H, Zhang L . Efficient superpixel-level multitask joint sparse representation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(10):5338-5351.
doi: 10.1109/TGRS.2015.2421638 url: http://ieeexplore.ieee.org/document/7097693/
[4] Albarracin J F H, Santos J A D, Torres R D S. Learning to combine spectral indices with genetic programming [C]//29th SIBGRAPI Conference on Graphics,Patterns and Images.Sao Paulo:IEEE, 2017: 408-415.
[5] Vaiphasa C, Skidmore A K , Boer W F D ,et al.A hyperspectral band selector for plant species discrimination[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007,62(3):225-235.
doi: 10.1016/j.isprsjprs.2007.05.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271607000512
[6] Martínez-Usómartinez-Uso A, Pla F, Sotoca J M , et al. Clustering-based hyperspectral band selection using information measures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007,45(12):4158-4171.
doi: 10.1109/TGRS.2007.904951 url: http://ieeexplore.ieee.org/document/4378560/
[7] Hou J, Xu E, Chi L, et al. Robust clustering based on dominant sets [C]//22nd International Conference on Pattern Recognition.Stockholm:IEEE, 2014: 1466-1471.
[8] Hou J, Pelillo M . A simple feature combination method based on dominant sets[J]. Pattern Recognition, 2013,46(11):3129-3139.
doi: 10.1016/j.patcog.2013.04.005 url: https://linkinghub.elsevier.com/retrieve/pii/S0031320313001751
[9] Zhu G K, Huang Y C, Lei J S , et al. Unsupervised hyperspectral band selection by dominant set extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016,54(1):227-239.
doi: 10.1109/TGRS.2015.2453362 url: http://ieeexplore.ieee.org/document/7166333/
[10] Pavan M, Pelillo M . Dominant sets and pairwise clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29(1):167-172.
doi: 10.1109/TPAMI.2007.250608 url: http://ieeexplore.ieee.org/document/4016559/
[11] Hou J, Xu E, Liu W X , et al. A density-based enhancement to dominant sets clustering[J]. IET Computer Vision, 2013,7(5):354-361.
doi: 10.1049/iet-cvi.2013.0072 url: https://digital-library.theiet.org/content/journals/10.1049/iet-cvi.2013.0072
[12] Yang X, Liu H, Latecki L J . Contour-based object detection as dominant set computation[J]. Pattern Recognition, 2012,45(5):1927-1936.
doi: 10.1016/j.patcog.2011.11.010 url: https://linkinghub.elsevier.com/retrieve/pii/S0031320311004626
[13] Hamid R, Maddi S, Johnson A , et al. A novel sequence representation for unsupervised analysis of human activities[J]. Artificial Intelligence, 2009,173(14):1221-1244.
doi: 10.1016/j.artint.2009.05.002 url: https://linkinghub.elsevier.com/retrieve/pii/S0004370209000629
[14] 贺金鑫, 陈圣波, 王阳 , 等. 一种基于朴素贝叶斯分类模型的高光谱矿物精确识别方法[J]. 光谱学与光谱分析, 2014,34(2):505-509.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ1402180002535A8DaG
[14] He J X, Chen S B, Wang Y , et al. An accurate approach to hyperspectral mineral identification based on naive Bayesian classification model[J]. Spectroscopy and Spectral Analysis, 2014,34(2):505-509.
[15] Zhao J, Zhong Y, Shu H , et al. High-resolution image classification integrating spectral-spatial-location cues by conditional random fields[J]. IEEE Transactions on Image Processing, 2016,25(9):4033-4045.
doi: 10.1109/TIP.2016.2577886 url: http://ieeexplore.ieee.org/document/7486129/
[16] Tarabalka Y, Rana A. Graph-cut-based model for spectral-spatial classification of hyperspectral images [C]//2014 IEEE International Geoscience and Remote Sensing Symposium(IGARSS).Quebec:IEEE, 2014: 3418-3421.
[17] Moser G, Serpico S B, Benediktsson J A . Land-cover mapping by Markov modeling of spatial-contextual information in very-high-resolution remote sensing images[J]. Proceedings of the IEEE, 2013,101(3):631-651.
doi: 10.1109/JPROC.2012.2211551 url: http://ieeexplore.ieee.org/document/6304904/
[18] 鲍蕊, 薛朝辉, 张像源 , 等. 综合聚类和上下文特征的高光谱影像分类[J]. 武汉大学学报(信息科学版), 2017,42(7):890-896.
[18] Bao R, Xue Z H, Zhang X Y , et al. Classification merged with clustering and context for hyperspectral imagery[J]. Geomatics and Information Science of Wuhan University, 2017,42(7):890-896.
[19] Boykov Y, Veksler O, Zabih R . Fast approximate energy minimization via graph cuts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001,23(11):1222-1239.
doi: 10.1109/34.969114 url: http://ieeexplore.ieee.org/document/969114/
[1] SHI Feifei, GAO Xiaohong, XIAO Jianshe, LI Hongda, LI Runxiang, ZHANG Hao. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1): 115-126.
[2] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[3] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[4] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[5] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[6] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[7] LI Yuan, WU Lin, QI Wenwen, GUO Zhengwei, LI Ning. A SAR image classification method based on an improved OGMRF-RC model[J]. Remote Sensing for Natural Resources, 2021, 33(4): 98-104.
[8] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[9] BAI Junlong, WANG Zhangqiong, YAN Haitao. A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 114-120.
[10] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[11] WANG Rong, ZHAO Hongli, JIANG Yunzhong, HE Yi, DUAN Hao. Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops[J]. Remote Sensing for Natural Resources, 2021, 33(3): 72-79.
[12] JIANG Xiao, ZHONG Chang, LIAN Zheng, WU Liangting, SHAO Zhitao. Research progress on classification criterion of geological information products based on satellite remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 279-283.
[13] LING Xiao, LIU Jiamei, WANG Tao, ZHU Yueqin, YUAN Lingling, CHEN Yangyang. Application of information value model based on symmetrical factors classification method in landslide hazard assessment[J]. Remote Sensing for Land & Resources, 2021, 33(2): 172-181.
[14] HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 11-19.
[15] MENG Qing, BAI Hongying, ZHAO Ting, GUO Shaozhuang, QI Guizeng. The eco-barrier effect of Qinling Mountain on aerosols[J]. Remote Sensing for Land & Resources, 2021, 33(1): 240-248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech