Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (2) : 59-65     DOI: 10.6046/gtzyyg.2019.02.09
|
Reconstruction of land surface temperature time-series datasets of FY-2F based on Savitzky-Golay filter
Di WU1, Jian CHEN1(), Man SHI1, Bangyong QIN2, Shengyang LI2
1.School of Remote Sensing and Surveying Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
2.Key Laboratory of Space Utilization, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, China
Download: PDF(6579 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Regional and spatial continuous land surface temperature (LST) can be retrieved from satellite remote sensing data, and has an important significance in such fields as global change, ecology, environment, and agricultural production. However, the LST retrieved by remote sensing usually has missing data in time and space due to the influence of clouds, aerosols, satellite viewing angle and solar illumination angle, which limits the application of LST products. In this paper, the authors reconstructed FY-2F daily LST data of 2013 in the Yangtze River delta region using Savitzky-Golay (S-G) filter based on the characteristics of long time-series LST. The results show that S-G filter can fill the missing values effectively and ensure the spatial distribution consistency of the LST after reconstruction. The average time-series loss rate of the original FY-2F LST product is 19.43%, and then decreases to 1.69% after S-G filtering. In order to verify the reconstruction accuracy of S-G filter, the authors randomly selected some regions that are not deficient, and then made comparison with the results after S-G filtering. It is proved that S-G filter reconstructing method has obtained high accuracy, with the mean absolute error 1.35 K and the fitting accuracy 0.95. Higher quality and long time-series FY-2F LST which is reconstructed based on S-G filter offers a good foundation to the study of temporal and spatial distribution of further thermal environment.

Keywords land surface temperature      Savitzky-Golay(S-G) filter      time-series      FY-2F      reconstruction     
:  TP79  
Corresponding Authors: Jian CHEN     E-mail: chjnjnu@163.com
Issue Date: 23 May 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Di WU
Jian CHEN
Man SHI
Bangyong QIN
Shengyang LI
Cite this article:   
Di WU,Jian CHEN,Man SHI, et al. Reconstruction of land surface temperature time-series datasets of FY-2F based on Savitzky-Golay filter[J]. Remote Sensing for Land & Resources, 2019, 31(2): 59-65.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.02.09     OR     https://www.gtzyyg.com/EN/Y2019/V31/I2/59
缺值率/% 逐时产品 日产品
数量/幅 百分比/% 数量/幅 百分比/%
<10 856 11.80 200 57.80
[10,30) 1 117 15.40 50 14.45
[30,50) 1 066 14.90 42 12.14
[50,70) 1 194 16.46 28 8.09
[70,90) 1 441 19.86 20 5.78
≥90 1 580 21.78 6 1.73
总计 7 254 100 346 100
Tab.1  Spatial vacancy rate statistics of FY-2F LST products
Fig.1  Distribution of meteorological stations in the study area
Fig.2  Reconstruction effects of different missing values
Fig.3  Distribution of LST vacancy rate in time-series
Fig.4  Examples of FY-2F LST reconstruction result
Fig.5  LST reconstruction effect of Nanjing meteorological station
Fig.6  Scatter plots of the measured value, before and after reconstruction
Fig.7  Scatter plots of LST before and after reconstruction
类别 2014年 2015年
R2 MAE/K R2 MAE/K
实测值与重建前LST 0.65 4.52 0.69 4.31
实测值与重建后LST 0.63 4.53 0.68 4.32
人工模拟缺值点 0.95 1.37 0.96 1.58
Tab.2  Evaluation of LST reconstruction accuracy from 2014 to 2015
[1] Dash P, Göttsche F M, Olesen F S , et al. Land surface temperature and emissivity estimation from passive sensor data:Theory and practice-current trends[J]. International Journal of Remote Sensing, 2002,23(13):2563-2594.
doi: 10.1080/01431160110115041 url: https://www.tandfonline.com/doi/full/10.1080/01431160110115041
[2] 周芳成, 宋小宁, 李召良 . 地表温度的被动微波遥感反演研究进展[J]. 国土资源遥感, 2014,26(1):1-7.doi: 10.6046/gtzyyg.2014.01.01.
doi: 10.6046/gtzyyg.2014.01.01
[2] Zhou F C, Song X N, Li Z L . Progress of land surface temperature retrieval based on passive microwave remote sensing[J]. Remote Sensing for Land and Resources, 2014,26(1):1-7.doi: 10.6046/gtzyyg.2014.01.01.
[3] 李天祺, 朱秀芳, 潘耀忠 , 等. MODIS陆地表面温度数据重构方法研究[J]. 北京师范大学学报(自然科学版), 2015,51(s1):70-76.
[3] Li T Q, Zhu X F, Pan Y Z , et al. Study on reconstruction methods of MODIS LST products[J]. Journal of Beijing Normal University (Natural Science), 2015,51(s1):70-76.
[4] 祝善友, 张桂欣 . 近地表气温遥感反演研究进展[J]. 地球科学进展, 2011,26(7):724-730.
doi: 10.11867/j.issn.1001-8166.2011.07.0724 url: http://d.wanfangdata.com.cn/Periodical/dqkxjz201107005
[4] Zhu S Y, Zhang G X . Progress in near surface air temperature retrieved by remote sensing technology[J]. Advances in Earth Science, 2011,26(7):724-730.
[5] Wan Z, Zhang Y, Zhang Q , et al. Validation of the land-surface temperature products retrieved from Terra moderate resolution imaging spectroradiometer data[J]. Remote Sensing of Environment, 2002,83(1-2):163-180.
doi: 10.1016/S0034-4257(02)00093-7 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425702000937
[6] 涂丽丽, 覃志豪, 张军 , 等. 基于空间内插的云下地表温度估计及精度分析[J].遥感信息, 2011(4):59-63.
[6] Tu L L, Qin Z H, Zhang J , et al. Estimation and error analysis of land surface temperature under the cloud based on spatial interpolation[J].Remote Sensing Information, 2011(4):59-63.
[7] 李儒, 张霞, 刘波 , 等. 遥感时间序列数据滤波重建算法发展综述[J]. 遥感学报, 2009,13(2):335-341.
doi: 10.3321/j.issn:1007-4619.2009.02.023 url: http://d.wanfangdata.com.cn/Periodical/ygxb200902023
[7] Li R, Zhang X, Liu B , et al. Review on methods of remote sensing time-series data reconstruction[J]. Journal of Remote Sensing, 2009,13(2):335-341.
[8] 边金虎, 李爱农, 宋孟强 , 等. MODIS植被指数时间序列Savitzky-Golay滤波算法重构[J]. 遥感学报, 2010,14(4):725-741.
[8] Bian J H, Li A N, Song M Q , et al. Reconstruction of NDVI time-series datasets of MODIS based on Savitzky-Golay filter[J]. Journal of Remote Sensing, 2010,14(4):725-741.
[9] Nguyen O V, Kawamura K, Trong D P , et al. Temporal change and its spatial variety on land surface temperature and land use changes in the Red River Delta,Vietnam,using MODIS time-series imagery[J]. Environmental Monitoring and Assessment, 2015,187(7):1-11.
doi: 10.1007/s10661-014-4167-x url: http://link.springer.com/10.1007/s10661-014-4167-x
[10] Neteler M . Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data[J]. Remote Sensing, 2010,2(1):333-351.
doi: 10.3390/rs1020333 url: http://www.mdpi.com/2072-4292/2/1/333
[11] 臧琳, 宋冬梅, 甘宇亮 , 等. 统计模型与滤波算法的地表温度重建方法探讨[J]. 测绘科学, 2016,41(7):11-17.
[11] Zang L, Song D M, Gan Y L , et al. Study on reconstruction of LST based on the statistical model and filtering algorithm[J]. Science of Surveying and Mapping, 2016,41(7):11-17.
[12] 韩冬锐, 徐新良, 李静 , 等. 长江三角洲城市群热环境安全格局及土地利用变化影响研究[J]. 地球信息科学学报, 2017,19(1):39-49.
[12] Han D R, Xu X L, Li J , et al. Study on the security pattern of the heat environment and the influence of land use change in the Yangtze River Delta urban agglomeration[J]. Journal of Geo-Information Science, 2017,19(1):39-49.
[13] Ooka R . Recent development of assessment tools for urban climate and heat-island investigation especially based on experiences in Japan[J]. International Journal of Climatology, 2007,27(14):1919-1930.
doi: 10.1002/(ISSN)1097-0088 url: http://doi.wiley.com/10.1002/%28ISSN%291097-0088
[14] 姚远, 陈曦, 钱静 . 城市地表热环境研究进展[J]. 生态学报, 2018,38(3):1134-1147.
[14] Yao Y, Chen X, Qian J . Research progress on the thermal environment of the urban surfaces[J]. Acta Ecologica Sinica, 2018,38(3):1134-1147.
[15] Savitzky A , Golay M J E .Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 1964,36(8):1627-1639.
doi: 10.1021/ac60214a047 url: http://pubs.acs.org/doi/abs/10.1021/ac60214a047
[16] Chen J, Jonsson P, Tamura M , et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter[J]. Remote Sensing of Environment, 2004,91(3-4):332-334.
doi: 10.1016/j.rse.2004.03.014 url: https://linkinghub.elsevier.com/retrieve/pii/S003442570400080X
[17] 权文婷, 周辉, 李红梅 , 等. 基于S-G滤波的陕西关中地区冬小麦生育期遥感识别和长势监测[J]. 中国农业气象, 2015,36(1):93-99.
doi: 10.3969/j.issn.1000-6362.2015.01.012
[17] Quan W T, Zhou H, Li H M , et al. Remote recognition and growth monitoring of winter wheat in key stages based on S-G filter in Guanzhong region[J]. Chinese Journal of Agrometeorology, 2015,36(1):93-99.
[18] 陈顺云, 刘培洵, 刘力强 , 等. 遥感与实测地表温度的对比分析及在地震研究中的意义[J]. 地球物理学报, 2011,54(3):747-755.
doi: 10.3969/j.issn.0001-5733.2011.03.014
[18] Chen S Y, Liu P X, Liu L Q , et al. Comparative analysis between land surface temperatures obtained by field measurement and satellite remote sensing and its implication in earthquake research[J]. Chinese Journal of Geophysics, 2011,54(3):747-755.
[19] 杨贵军, 孙晨红, 历华 . 黑河流域ASTER与MODIS融合生成高分辨率地表温度的验证[J]. 农业工程学报, 2015,31(6):193-200.
[19] Yang G J, Sun C H, Li H . Verification of high-resolution land surface temperature by blending ASTER and MODIS data in Heihe River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(6):193-200.
[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] BO Yingjie, ZENG Yelong, LI Guoqing, CAO Xingwen, YAO Qingxiu. Impacts of floating solar parks on spatial pattern of land surface temperature[J]. Remote Sensing for Natural Resources, 2022, 34(1): 158-168.
[3] REN Chaofeng, PU Yuchi, ZHANG Fuqiang. A method for extracting match pairs of UAV images considering geospatial information[J]. Remote Sensing for Natural Resources, 2022, 34(1): 85-92.
[4] LI Mengmeng, FAN Xueting, CHEN Chao, LI Qiannan, YANG Jin. Monitoring and interpretation of land subsidence in mining areas in Xuzhou City during 2016—2018[J]. Remote Sensing for Natural Resources, 2021, 33(4): 43-54.
[5] CHAO Zhenhua, CHE Mingliang, HOU Shengfang. Brief review of vegetation phenological information extraction software based on time series remote sensing data[J]. Remote Sensing for Natural Resources, 2021, 33(4): 19-25.
[6] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[7] YE Wantong, CHEN Yihong, LU Yinhao, Wu Penghai. Spatio-temporal variation of land surface temperature and land cover responses in different seasons in Shengjin Lake wetland during 2000—2019 based on Google Earth Engine[J]. Remote Sensing for Land & Resources, 2021, 33(2): 228-236.
[8] BI Weihua, ZHAO Xingtao, YANG Huachao, BIAN Hefang, ZHANG Qiuzhao. Research on smartphone based UAV low-altitude oblique photogrammetry system and its applications[J]. Remote Sensing for Land & Resources, 2021, 33(2): 248-255.
[9] FAN Jiazhi, LUO Yu, TAN Shiqi, MA Wen, ZHANG Honghao, LIU Fulai. Accuracy evaluation of the FY-3C/MWRI land surface temperature product in Hunan Province[J]. Remote Sensing for Land & Resources, 2021, 33(1): 249-255.
[10] ZHOU Fangcheng, TANG Shihao, HAN Xiuzhen, SONG Xiaoning, CAO Guangzhen. Research on reconstructing missing remotely sensed land surface temperature data in cloudy sky[J]. Remote Sensing for Land & Resources, 2021, 33(1): 78-85.
[11] Bing ZHAO, Kebiao MAO, Yulin CAI, Xiangjin MENG. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Land & Resources, 2020, 32(2): 233-240.
[12] Junnan XIONG, Wei LI, Weiming CHENG, Chunkun FAN, Jin LI, Yunliang ZHAO. Spatial variability and influencing factors of LST in plateau area: Exemplified by Sangzhuzi District[J]. Remote Sensing for Land & Resources, 2019, 31(2): 164-171.
[13] Jiajun LI, Hui XU, Dawei ZHAO. The application of real scene model to digital museum of traditional villages[J]. Remote Sensing for Land & Resources, 2019, 31(1): 264-270.
[14] Ying LI, Haiyang YU, Yan WANG, Jianpeng WU, Li YANG. Classification of urban vegetation based on unmanned aerial vehicle reconstruction point cloud and image[J]. Remote Sensing for Land & Resources, 2019, 31(1): 149-155.
[15] Ying WU, Sulin JIANG, Zhenhui WANG. Effect of radio-frequency interference on the retrieval of land surface temperature from microwave radiation imager[J]. Remote Sensing for Land & Resources, 2018, 30(4): 90-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech