Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (2) : 180-186     DOI: 10.6046/gtzyyg.2019.02.25
|
Object-oriented classification of unmanned aerial vehicle image for thermal erosion gully boundary extraction
Linlin LIANG1,2, Liming JIANG1,2(), Zhiwei ZHOU1, Yuxing CHEN1,2, Yafei SUN1,2
1.State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China;
2.University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(3779 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Global climate warming and human activities have caused large areas of permafrost degradation and thermal erosion gully in the Tibetan Plateau, seriously affecting the engineering construction and the ecological environment in permafrost regions. In this study, high resolution unmanned aerial vehicle (UAV) images and object-oriented classification approaches were applied to extracting the thermal erosion gullies in Eboling Mountain of Heihe River. Five kinds of object-oriented supervised learning algorithms, namely nearest neighbor, K-nearest neighbor, decision tree, support vector machine (SVM), and random forest, were analyzed for the capability and accuracy of the extraction of thermal erosion gullies in detail. The field GPS data were used for evaluating the classification accuracy. The results show that, in the object-oriented image analysis, the segmentation scale parameters have little effect on the extraction of thermal erosion gullies, wheres classification features have a greater impact, so it is important to select the appropriate classification features. The overall accuracies of the five machine learning methods are all over 90%, among which the Kappa coefficient of the SVM is higher than the other four classification methods. This means that SVM is more suitable for the thermal erosion gullies boundary extraction of UAV images in this study. The combination of high resolution UAV images and object-oriented classification methods has broad application prospects in the extraction of the thermal erosion gullies.

Keywords thermal erosion gully of permafrost      unmanned aerial vehicle      Eboling Mountain of Heihe River permafrost region      high spatial resolution images      object-oriented analysis     
:  TP79  
Corresponding Authors: Liming JIANG     E-mail: jlm@whigg.ac.cn
Issue Date: 23 May 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Linlin LIANG
Liming JIANG
Zhiwei ZHOU
Yuxing CHEN
Yafei SUN
Cite this article:   
Linlin LIANG,Liming JIANG,Zhiwei ZHOU, et al. Object-oriented classification of unmanned aerial vehicle image for thermal erosion gully boundary extraction[J]. Remote Sensing for Land & Resources, 2019, 31(2): 180-186.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.02.25     OR     https://www.gtzyyg.com/EN/Y2019/V31/I2/180
Fig.1  Study area image
Fig.2  Thermal erosion gully in the study area
Fig.3  UX5 fixed-wing unmanned aerial vehicle
Fig.4  GPS field measurement
波段权重(R,G,B,
DSM, slope)
光谱信
息权重
紧致度
权重
分割
尺度
1,1,1,1,1 0.7 0.8 150
1,1,1,1,1 0.7 0.8 220
Tab.1  Segmentation parameters
实验
序号
分割参数(分割尺
度,光谱信息权重,
紧致度权重)
滑塌、非滑塌分类特征提取
SY1 150,0.7,0.8 所有波段的平均值、标准差和比率
SY2 220,0.7,0.8 所有波段的平均值、标准差和比率
SY3 220,0.7,0.8 绿光、红光和坡度波段的标准差及蓝光、绿光波段的比率
Tab.2  Classification feature parameters
Fig.5  SY1 sample distribution and classification results
分类方法 类型 滑塌 非滑塌 总数 制图精度/% 用户精度/% 总体精度/% Kappa
最邻近 滑塌 2 149 1 651 3 800 83 57 97 0.66
非滑塌 433 78 830 79 263 98 99
KNN 滑塌 2 150 1 600 3 750 83 57 98 0.67
非滑塌 432 78 881 79 313 98 99
决策树 滑塌 2 195 2 577 4 772 85 46 96 0.58
非滑塌 387 77 904 78 291 97 100
SVM 滑塌 2 011 903 2 914 78 69 98 0.72
非滑塌 571 79 578 80 149 99 99
随机森林 滑塌 2 160 1 363 3 523 84 61 98 0.70
非滑塌 422 79 118 79 540 98 99
Tab.3  Confusion matrix of SY1 classification method
分类方法 类型 滑塌 非滑塌 总数 制图精度/% 用户精度/% 总体精度/% Kappa
最邻近 滑塌 2 251 1 681 3 932 87 57 98 0.68
非滑塌 331 78 788 79 119 98 100
KNN 滑塌 2 213 1 680 3 893 86 57 98 0.67
非滑塌 369 78 801 79 170 98 100
决策树 滑塌 1 897 1 899 3 796 73 50 97 0.58
非滑塌 685 78 582 79 267 98 99
SVM 滑塌 2 096 1 298 3 394 81 62 98 0.69
非滑塌 486 79 183 79 669 98 99
随机森林 滑塌 1 984 1 908 3 892 77 51 97 0.60
非滑塌 598 78 573 79 171 98 99
Tab.4  Confusion matrix of SY2 classification method
分类方法 类型 滑塌 非滑塌 总数 制图精度/% 用户精度/% 总体精度/% Kappa
最邻近 滑塌 2 267 2 598 4 865 88 47 96 0.58
非滑塌 315 77 782 78 097 97 100
KNN 滑塌 2 265 3 041 5 306 88 43 96 0.55
非滑塌 316 77 414 77 730 96 100
决策树 滑塌 2 431 7 595 10 026 94 24 91 0.35
非滑塌 151 72 886 73 037 91 100
SVM 滑塌 2 213 2 325 4 538 86 49 97 0.61
非滑塌 369 78 156 78 525 97 100
随机森林 滑塌 2 296 6 461 8 757 89 26 92 0.37
非滑塌 286 74 020 74 306 92 100
Tab.5  Confusion matrix of SY3 classification method
Fig.6  Comparison of Kappa coefficients of five classification methods
[1] 周幼吾, 郭东信, 邱国庆 , 等. 中国冻土[M]. 北京: 科学出版社, 2000.
[1] Zhou Y W, Guo D X, Qiu G Q , et al. Chinese Frozen Soil[M]. Beijing: Science Press, 2000.
[2] Zhang T, Barry R G, Knowles K , et al. Statistics and characteristics of permafrost and ground ice distribution in the Northern Hemisphere[J]. Polar Geography, 1999,23(2):147-169.
[3] Williams P J, Smith M W. The Frozen Earth [M]. New York: Cambridge University Press, 1989.
[4] 周幼吾, 郭东信 . 我国多年冻土的主要特征[J]. 冰川冻土, 1982,4(1):1-19.
[4] Zhou Y W, Guo D X . Principal characteristics of permafrost in China[J]. Journal of Glaciology and Cryopedology, 1982,4(1):1-9.
[5] 牟翠翠, 张廷军, 曹斌 , 等. 祁连山区黑河上游俄博岭多年冻土区活动层碳储量研究[J]. 冰川冻土, 2013,35(1):1-9.
doi: 10.7522/j.issn.1000-0240.2013.0001
[5] Mu C C, Zhang T J, Cao B , et al. Study of the organic carbon storage in the active layer of permafrost over the Eboling Mountain in the upper reaches of the Heihe River in the eastern Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013,35(1):1-9.
[6] 马立峰 . 多年冻土地区热融滑塌及其工程危害性的研究[D]. 兰州:中国科学院寒区旱区环境与工程研究所, 2006.
[6] Ma L F . Study on Thaw Slump and Its Hazardness to Engineering in Permafrost Regions[D].Lanzhou:Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2006.
[7] Daniel H, Petra F, Francesco A , et al. A semi-automated object-based approach for landslide detection validated by persistent scatterer interferometry measures and landslide inventories[J]. Remote Sensing, 2012,4(5):1310-1336.
doi: 10.3390/rs4051310 url: http://www.mdpi.com/2072-4292/4/5/1310
[8] 甘甜, 李金平, 李小强 , 等. 面向对象的高分辨率遥感影像建筑物震害信息提取[J]. 测绘工程, 2015,24(4):11-15.
[8] Gan T, Li J P, Li X Q , et al. Object-oriented method of building damage extraction from high-resolution images[J]. Engineering of Surveying and Mapping, 2015,24(4):11-15.
[9] 孙娜, 高志强, 王晓晶 , 等. 基于高分遥感影像的黄土高原地区水体高精度提取[J]. 国土资源遥感, 2017,29(4):173-178.doi: 10.6046/gtzyyg.2017.04.26.
[9] Sun N, Gao Z Q, Wang X J , et al. High-precise extraction for water on the Loess Plateau region from high resolution satellite image[J]. Remote Sensing for Land and Resources, 2017,29(4):173-178.doi: 10.6046/gtzyyg.2017.04.26.
[10] 王岩, 王晓青, 窦爱霞 . 面向对象遥感分类方法在汶川地震震害提取中的应用[J]. 地震, 2009,29(3):54-60.
[10] Wang Y, Wang X Q, Dou A X . Building damage detection of the 2008 Wenchuan,China earthquake based on object-oriented classification method[J]. Earthquake, 2009,29(3):54-60.
[11] Kraaijenbrink P D A, Shea J M, Pellicciotti F , et al. Object-based analysis of unmanned aerial vehicle imagery to map and characterise surface features on a debris-covered glacier[J]. Remote Sensing of Environment, 2016,186:581-595.
doi: 10.1016/j.rse.2016.09.013 url: https://linkinghub.elsevier.com/retrieve/pii/S003442571630356X
[12] Colomina I, Molina P . Unmanned aerial systems for photogrammetry and remote sensing:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,92(2):79-97.
doi: 10.1016/j.isprsjprs.2014.02.013 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271614000501
[13] 李德仁, 李明 . 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报(信息科学版), 2014,39(5):505-513.
doi: 10.13203/j.whugis20140045
[13] Li D R, Li M . Research advance and application prospect of unmanned aerial vehicle remote sensing system[J]. Geomatics and Information Science of Wuhan University, 2014,39(5):505-513.
[14] Baatz M,Schäpe A .An optimization approach for high quality multi-scale image segmentation[EB/OL]. http://test.ecognition.com/sites/default/files/405_baatz_fp_12.pdf.
[15] 王旭东, 段福洲, 屈新原 , 等. 面向对象和SVM结合的无人机数据建筑物提取[J]. 国土资源遥感, 2017,29(1):97-103.doi: 10.6046/gtzyyg.2017.01.15.
[15] Wang X D, Duan F Z, Qu X Y , et al. Building extraction based on UAV imagery data with the synergistic use of objected-based method and SVM classifier[J]. Remote Sensing for Land and Resources, 2017,29(1):97-103.doi: 10.6046/gtzyyg.2017.01.15.
[16] Trimble Germany GmbH. eCognition Developer 8.64.1 User Guide[M]. Munchen:Trimble Germany Trappentreustre, 2011.
[17] Benz U C, Hofmann P, Willhauck G , et al. Multi-resolution,object-oriented fuzzy analysis of remote sensing data for GIS-ready information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004,58(3):239-258.
doi: 10.1016/j.isprsjprs.2003.10.002 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271603000601
[1] BI Weihua, ZHAO Xingtao, YANG Huachao, BIAN Hefang, ZHANG Qiuzhao. Research on smartphone based UAV low-altitude oblique photogrammetry system and its applications[J]. Remote Sensing for Land & Resources, 2021, 33(2): 248-255.
[2] XIONG Yujiu, ZHAO Shaohua, YAN Chunhua, QIU Gouyu, SUN Hua, WANG Yanlin, QIN Longjun. A comparative study of methods for monitoring and assessing urban green space resources at multiple scales[J]. Remote Sensing for Land & Resources, 2021, 33(1): 54-62.
[3] Zhiwei LIN, Weihao TU, Jiahang HUANG, Qilu DING, Zhengwen ZHOU, Jinfu LIU. Tree species recognition of UAV aerial images based on FC-DenseNet[J]. Remote Sensing for Land & Resources, 2019, 31(3): 225-233.
[4] Xiang WANG, Xinxin WANG, Xiu SU, Qinghui MENG, Dejun ZOU, Xiaodong YI, Lin WANG, Shiyong WEN, Jianhua ZHAO. Thermal discharge monitoring of nuclear power plant with aerial remote sensing technology using a UAV platform: Take Hongyanhe Nuclear Power Plant,Liaoning Province,as example[J]. Remote Sensing for Land & Resources, 2018, 30(4): 182-186.
[5] Changkui SUN, Shanlei LIU, Shengyao WANG, Chao CHEN, Quanfei SHEN, Shanqiu SHI, Wei WANG. Application of UAV in construction of smart city[J]. Remote Sensing for Land & Resources, 2018, 30(4): 8-12.
[6] Liyan REN, Yingcheng LI, Yanli XUE, Xiaobo DING, Hao WU. Development and application of the UAV flying supervisory system based on Beidou technology[J]. Remote Sensing for Land & Resources, 2018, 30(2): 238-242.
[7] YANG Rujun, XIE Guoxue. A discussion on domestic satellite data in land and resources supervision:Taking Guangxi Zhuang Autonomous Region as example[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 52-57.
[8] XUE Wu, MA Yongzheng, ZHAO Ling, MO Delin. UAV-based rural homestead ownership determination[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 124-127.
[9] LU Heng, FU Xiao, LIU Chao, GUO Jiawei, GOU Si, LIU Tiegang. Study of method for fast segmentation based on UAV image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 72-78.
[10] DING Leilong, LI Qiangzi, DU Xin, TIAN Yichen, YUAN Chao. Vegetation extraction method based on color indices from UAV images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 78-86.
[11] HE Yinan, GENG Juan, QIN Jun, LIU Chen, YANG Hui. Integration of Forstner and NCC constraint for UAV image registration[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 48-54.
[12] HE Hai-qing. A Rapid Sub-pixel Corners Detection Method for UAV Image Based on Image Block[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 21-25.
[13] QIN Qi-Ming, JIN Chuan, CHEN De-Zhi, LI Jie. THE DESIGN AND IMPLEMENTATION OF THE UNMANNED
AERIAL VEHICLES REMOTE SENSING DATA TRANSFER SYSTEM
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(2): 31-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech