Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (2) : 187-195     DOI: 10.6046/gtzyyg.2019.02.26
|
Application of fuel dry index in the prairie fire danger
Baohua HUANG1,2
1.Yantai Real Estate Registration Center, Yantai 264003, China
2.College of Technology, China Agriculture University (Yantai), Yantai 264670, China
Download: PDF(4534 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In this paper, on the basis of prairie biophysical characteristics and in combination with the principle of energy exchange (sensible heat and latent heat flux obtained by remote sensing and meteorological data), the fuel dry index (Fd) was proposed and applied to the Shandong prairie fire monitoring. Fd can better solve the prairie fire forecast, fire danger early warning in time and space and the estimation accuracy. It can change dynamic warning daily high fire risk areas with time in Shandong Province. Fd and fire potential index (FPI) were used to study the fire danger on April 8, 2010. Fire indicating effect of Fd is better than that of FPI. In the equidistance fire classification, data of 31 fire points in 2010 indicated by Fd fell in grade III, accounting for 87.1%, and 0 fell in grade I; the fire locations were in good agreement with areas of high fire risk early warning. In fuel dry index (Fd) graph, it can be seen that Fd has close relationship with the prairie vegetation growing season; the early development of Fd is high, but later it exhibits decreasing trend; at the medium stage, Fd is low; at the late stage,Fd is high, and shows a trend of rising. Overall, the Fd index plays an important role in fire danger forecast at the grassland growing stage.

Keywords latent heat flux      sensible heat flux      fuel dry index      prairie fire     
:  S762  
Issue Date: 23 May 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Baohua HUANG
Cite this article:   
Baohua HUANG. Application of fuel dry index in the prairie fire danger[J]. Remote Sensing for Land & Resources, 2019, 31(2): 187-195.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.02.26     OR     https://www.gtzyyg.com/EN/Y2019/V31/I2/187
Fig.1  Vegetation types distribution in Shandong Province in 2010
状态 个数 均值 标准差 均值的标准差
Fd 火点
非火点
31
62
0.652 9
0.183 8
0.204 4
0.087 5
0.036 7
0.011 1
Tab.1  Fire/no fire points Fd group statistics
假设条件 方差方程Levene检验 均值方程的T检验
F统计量 P T统计量 自由度 P值(双尾) 均值差值 标准误差值 95%置信区间
下限 上限
假设方差相等 30.948 0.000 15.507 91.00 0.000 0.469 0 0.030 25 0.409 0 0.529 1
假设方差不相等 12.228 35.603 0.000 0.469 0 0.038 36 0.391 2 0.546 9
Tab.2  Fire/no fire point Fd independent samples test
Fig.2  Correlation analysis and values change of Fd and FPI of fire in Shandong Province on April 8, 2010
火险等级 Fd 火点个数 百分比/% 相应措施
<0.2 0 0 不燃烧,无火险。一般不会发生火灾,可以安心生产
[0.2,0.4) 4 12.9 难燃烧,低度火险。很少发生火灾,注意防火
[0.4,0.6) 9 29.0 中度火险。限制火种进入草地,生产用火应注意采取安全措施,禁止其他野外用火
[0.6,0.8) 10 32.3 高度火险。禁止火种进入草地,巡检,做好防火准备,准备灭火
≥0.8 8 25.8 极度火险。严禁一切火种进入草地,加强巡查,做好充分防火准备,灭火队伍随时准备灭火
Tab.3  Prairie fire danger rating based on the fuel dry danger index
Fig.3  Fire point distribution and relationship between fire danger rating and fire frequency of Shandong in 2010
Fig.4  Time variation of daily minimum temperature, vegetation coverage, prairie height and LAI of Shandong in 2010
Fig.5  Relationship of λE, H, Fd and DOY in Shandong Province in 2010
Fig.6  DOY 25, 140, 241 and 301 Fd value of Shandong in 2010
[1] Smith B , McDermid G J .Examination of fire-related succession within the dry mixed-grass subregion of Alberta with the use of MODIS and Landsat[J]. Rangeland Ecology and Management, 2014,67(3):307-317.
doi: 10.2111/REM-D-13-00078.1 url: https://linkinghub.elsevier.com/retrieve/pii/S1550742414500462
[2] 黄宝华, 张华, 周利霞 . 集成点燃和火源的火险指数应用研究[J]. 中国安全科学学报, 2013,23(8):37-42.
[2] Huang B H, Zhang H, Zhou L X . Research on application of integrated fire danger index based on ignition and fire[J]. China Safety Science Journal, 2013,23(8):37-42.
[3] 黄宝华, 孙治军, 张华 , 等. 潜在森林火险评估方法研究——以山东省为例[J]. 灾害学, 2014,29(4):116-121.
[3] Huang B H, Sun Z J, Zhang H , et al. Research on the evaluation method of potential forest fire:Taking Shandong Provience as an example[J]. Journal of Catastrophology, 2014,29(4):116-121.
[4] Agee J K, Wright C S, Williamson N , et al. Foliar moisture content of Pacific Northwest vegetation and its relation to wildland fire behavior[J]. Forest Ecology and Management, 2002,167(1-3):57-66.
doi: 10.1016/S0378-1127(01)00690-9 url: https://linkinghub.elsevier.com/retrieve/pii/S0378112701006909
[5] Zarco-Tejada P J, Rueda C A, Ustin S L . Water content estimation in vegetation with MODIS reflectance data and model inversion methods[J]. Remote Sensing of Environment, 2003,85(1):109-124.
doi: 10.1016/S0034-4257(02)00197-9 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425702001979
[6] Huesca M, Litago J, Palacios-Orueta A , et al. Assessment of forest fire seasonality using MODIS fire potential:A time series approach[J]. Agricultural and Forest Meteorology, 2009,149(11):1946-1955.
doi: 10.1016/j.agrformet.2009.06.022 url: https://linkinghub.elsevier.com/retrieve/pii/S0168192309001658
[7] Dasgupta S, Qu J J, Hao X , et al. Evaluating remotely sensed live fuel moisture estimations for fire behavior predictions in Georgia,USA[J]. Remote Sensing of Environment, 2007,108(2):138-150.
doi: 10.1016/j.rse.2006.06.023 url: https://linkinghub.elsevier.com/retrieve/pii/S003442570600455X
[8] Dennison P E, Moritz M A, Taylor R S . Evaluating predictive models of critical live fuel moisture in the Santa Monica Mountains,California[J]. International Journal of Wildland Fire, 2008,17(1):18-27.
doi: 10.1071/WF07017 url: http://www.publish.csiro.au/?paper=WF07017
[9] Chuvieco E, González I, Verdú F , et al. Prediction of fire occurrence from live fuel moisture content measurements in a Mediterranean ecosystem[J]. International Journal of Wildland Fire, 2009,18(4):430-441.
doi: 10.1071/WF08020 url: http://www.publish.csiro.au/?paper=WF08020
[10] Dennison P E, Roberts D A, Thorgusen S R , et al. Modeling seasonal changes in live fuel moisture and equivalent water thickness using a cumulative water balance index[J]. Remote Sensing of Environment, 2003,88(4):442-452.
doi: 10.1016/j.rse.2003.08.015 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425703002529
[11] Chowdhury E H, Hassan Q K . Operational perspective of remote sensing-based forest fire danger forecasting systems[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,104:224-236.
doi: 10.1016/j.isprsjprs.2014.03.011 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271614000835
[12] Snyder R L, Spano D, Duce P , et al. A fuel dryness index for grassland fire-danger assessment[J]. Agricultural and Forest Meteoro-logy, 2006,139(1-2):1-11.
doi: 10.1016/j.agrformet.2006.05.006 url: https://linkinghub.elsevier.com/retrieve/pii/S016819230600147X
[13] 田国良 . 热红外遥感[M]. 北京: 电子工业出版社, 2006: 302-304.
[13] Tian G L. Thermal Remote Sensing[M]. Beijing: Publishing House of Electronics Industry, 2006: 302-304.
[14] 王丁, 张丽琴, 薛建辉 . 林木对干旱胁迫的生理与分子响应研究综述[J]. 安徽农业科学, 2011,39(25):15426-15431.
[14] Wang D, Zhang L Q, Xue J H . A review about physiological and molecular responses to drought stress of forest tree[J]. Journal of Anhui Agricultural Sciences, 2011,39(25):15426-15431.
[15] 张川, 闫浩芳, 大上博基 , 等. 表层有效土壤水分参数化及冠层下土面蒸发模拟[J].农业工程学报, 2015(2):102-107.
[15] Zhang C, Yan H F, Oue H , et al. Parameterization of surface soil available moisture and simulation of soil evaporation beneath canopy[J].Transaction of the Chinese Society of Agricultural Engineering, 2015(2):102-107.
[16] Van de Griend A, Owe M . On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces[J]. International Journal of Remote Sensing, 1993,14(6):1119-1131.
doi: 10.1080/01431169308904400 url: https://www.tandfonline.com/doi/full/10.1080/01431169308904400
[17] 孙敏章, 刘作新, 吕谋超 , 等. 基于陆面能量平衡方程的遥感模型[J]. 灌溉排水学报, 2005,24(3):74-76.
[17] Sun M Z, Liu Z X, Lyu M C , et al. The study of monitoring ET by SEBEL and its application in water resource management of Hai River Basin[J]. Journal of irrigation and orainage, 2005,24(3):74-76.
[18] 曾丽红, 宋开山, 张柏 , 等. 应用Landsat数据和SEBAL模型反演区域蒸散发及其参数估算[J]. 遥感技术与应用, 2008,23(3):255-263.
[18] Zeng L H, Song K S, Zhang B , et al. Applying Landsat data and SEBAL model to inverse regional evapotranspiration and its parameters estimation[J]. Remote Sensing Technology and Application, 2008,23(3):255-263.
[19] Allen R G, Pereira L S, Raes D , et al. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements[M]. Italy:Food and Agriculture Organization of the United Nations Rome, 1998.
[20] Lagouarde J P, Brunet Y . Spatial integration of surface latent heat flux and evaporation mapping[J]. Advances in Space Research. 1989,9(7):259-264.
[21] Su Z, Jacobs C . ENVISAT:Actual Evaporation[R]. Delft:Beleidscommissie Remote Sensing, 2001.
[22] 田贵全, 张明才 . 山东省生态环境遥感监测[J]. 国土资源遥感, 2006,18(4):63-67.doi: 10.6046/gtzyyg.2006.04.16.
doi: 10.6046/gtzyyg.2006.04.16
[22] Tian G Q, Zhang M C . The remote sensing monitoring of ecological environment in Shandong Province[J]. Remote Sensing for Land and Resources, 2006,18(4):63-67.doi: 10.6046/gtzyyg.2006.04.16.
[23] 冉有华, 李新, 卢玲 . 基于多源数据融合方法的中国1 km土地覆盖分类制图[J]. 地球科学进展, 2009,24(2):192-203.
[23] Ran Y H, Li X, Lu L . China land cover classification at 1 km spatial resolution based on a multi-source data fusion approach[J]. Advances in Earth Science, 2009,24(2):192-203.
[1] Jian YU, Yunjun YAO, Shaohua ZHAO, Kun JIA, Xiaotong ZHANG, Xiang ZHAO, Liang SUN. Estimating latent heat flux over farmland from Landsat images using the improved METRIC model[J]. Remote Sensing for Land & Resources, 2018, 30(3): 83-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech