Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (2) : 218-223     DOI: 10.6046/gtzyyg.2019.02.30
|
An analysis of mining intensity about metal mines based on investigation of tailing reservoirs in Tibet
Haiqing WANG, Li LI, Ling CHEN, Wenjia XU, Jinzhong YANG, Qiong LIU
China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
Download: PDF(931 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Based on remote sensing technology, the authors investigated the distribution of tailings reservoir in Tibet, such as its mineral resources, utilization status and scale. The current mining intensity of different administrative regions, different metallogenic belts and different mine types in Tibet was analyzed. Some conclusions have been reached: for different prefectural-level divisions, the metal mines’ mining intensity in Lhasa City is the largest, the metal mines exploitation potential in Lhasa City and Naqu area are larger. For different county-level administrative regions, the metal mines mining intensity in Mozhugongka County of Lhasa City is the largest, the metal mines exploitation potential in Mozhugongka County of Lhasa City and Shenzha County of Naqu area are larger. For different important metallogenic belts, the metal mines mining intensity in Gangdise metallogenic belt is the largest, the metal mines exploitation potential in Gangdise metallogenic belt is also the largest. For different mine types, the metal mines mining intensity of nonferrous minerals is the largest, the metal mines exploitation potential of nonferrous minerals is also the largest. For different specific mine types, the metal mines mining intensity of lead-zinc mines and copper mines are the largest, and the metal mines exploitation potentialof lead-zinc mines is the largest.

Keywords Tibet      metal mines      mining intensity      tailings reservoir      remote sensing     
:  P627  
Issue Date: 23 May 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haiqing WANG
Li LI
Ling CHEN
Wenjia XU
Jinzhong YANG
Qiong LIU
Cite this article:   
Haiqing WANG,Li LI,Ling CHEN, et al. An analysis of mining intensity about metal mines based on investigation of tailing reservoirs in Tibet[J]. Remote Sensing for Land & Resources, 2019, 31(2): 218-223.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.02.30     OR     https://www.gtzyyg.com/EN/Y2019/V31/I2/218
地区 黑色金属矿产 有色金属矿产 贵重金属矿产 稀有稀土分散
元素金属矿产
总计
铬铁矿 铁矿 钼矿 铅矿 锑矿 铜矿 锡矿 锌矿 金矿 银矿 锂矿
拉萨市 0 2 2 6 0 7 0 2 0 0 0 19
日喀则市 0 1 0 6 1 1 0 0 1 1 1 12
昌都市 0 1 0 5 0 2 1 0 1 0 0 10
林芝市 0 0 1 3 0 0 0 0 0 0 0 4
山南市 7 0 0 1 1 1 0 0 1 0 0 11
那曲地区 4 0 0 3 0 1 0 0 0 0 0 8
阿里地区 0 0 0 0 1 0 0 0 0 0 0 1
合计 11 4 3 24 3 12 1 2 3 1 1 65
总计 15 45 4 1
  
类型 矿种 冈底斯成矿带 西南三江成矿带
黑色金属矿产 铬铁矿 0 0
铁矿 3 1
有色金属矿产 钼矿 3 0
铅矿 18 3
锑矿 0 0
铜矿 9 2
锡矿 0 0
锌矿 2 0
贵重金属矿产 金矿 1 1
银矿 1 0
稀有稀土分散
元素金属矿产
锂矿 1 0
总计 38 7
  
Fig.1  Remote sensing images of some tailing reservoirs in study area
序号 行政区 矿种 面积/hm2 利用状态 所属成矿带
1 拉萨市林周县 铅锌矿 8.31 正在利用 冈底斯成矿带
2 拉萨市林周县 铁矿 7.66 正在利用 冈底斯成矿带
3 拉萨市堆龙德庆区 铅锌矿 9.72 正在利用 冈底斯成矿带
4 拉萨市墨竹工卡县 铅锌矿 4.31 正在利用 冈底斯成矿带
5 拉萨市墨竹工卡县 铜矿 34.72 正在利用 冈底斯成矿带
6 拉萨市墨竹工卡县 铅锌矿 10.86 正在利用 冈底斯成矿带
7 拉萨市墨竹工卡县 铜矿 18.10 正在利用 冈底斯成矿带
8 拉萨市墨竹工卡县 铜矿 26.14 正在建设 冈底斯成矿带
9 拉萨市墨竹工卡县 铜矿 66.56 正在建设 冈底斯成矿带
10 日喀则市昂仁县 铅锌矿 8.85 正在利用 其他
11 日喀则市谢通门县 铅锌矿 17.48 正在利用 冈底斯成矿带
12 日喀则市谢通门县 铅锌矿 17.67 正在利用 冈底斯成矿带
13 日喀则市谢通门县 铜矿 4.26 正在建设 冈底斯成矿带
14 日喀则市谢通门县 铜矿 3.87 正在建设 冈底斯成矿带
15 昌都市江达县 铜矿 36.16 正在利用 西南三江成矿带
16 山南市加查县 金矿 3.48 正在利用 其他
17 那曲地区嘉黎县 铅锌矿 10.34 正在利用 冈底斯成矿带
18 那曲地区申扎县 铜矿 2.88 正在建设 其他
19 那曲地区申扎县 铜矿 9.21 正在建设 冈底斯成矿带
20 那曲地区申扎县 铜矿 3.55 正在建设 冈底斯成矿带
21 阿里地区噶尔县 锑矿 9.64 正在建设 其他
Tab.3  List of remote sensing investigation for tailing reservoirs in study area
行政区 正在利用 正在建设
数量/处 面积/hm2 数量/处 面积/hm2
拉萨市 林周县 2 15.97 0 0
堆龙德庆区 1 9.72 0 0
墨竹工卡县 4 67.99 2 92.70
合计 7 93.68 2 92.70
日喀则市 昂仁县 1 8.85 0 0
谢通门县 2 35.15 2 8.13
合计 3 44.00 2 8.13
昌都市 江达县 1 36.16 0 0
山南市 加查县 1 3.48 0 0
那曲地区 嘉黎县 1 10.34 0 0
申扎县 0 0 3 15.64
合计 1 10.34 3 15.64
阿里地区 噶尔县 0 0 1 9.64
Tab.4  List of tailing reservoirs in each administrative region
类型 矿种 正在利用 正在建设
数量/处 面积/hm2 数量/处 面积/hm2
黑色金属矿产 铁矿 1 7.66 0 0
有色金属矿产 铜矿 3 88.98 7 116.47
铅锌矿 8 87.54 0 0
锑矿 0 0 1 9.64
合计 11 176.52 8 126.11
贵重金属矿产 金矿 1 3.48 0 0
Tab.5  List of tailing reservoirs for different mine types
[1] 中华人民共和国国土资源部. 2017中国矿产资源报告[M]. 北京: 地质出版社, 2017: 14-20.
[1] Ministry of Land and Resources People’s Republic of China. 2017 China Mineral Resources[M]. Beijing: Geological Publishing House, 2017: 14-20.
[2] 中华人民共和国国土资源部. 2016中国矿产资源报告[M]. 北京: 地质出版社, 2016: 15-22.
[2] Ministry of Land and Resources People’s Republic of China. 2016 China Mineral Resources[M]. Beijing: Geological Publishing House, 2016: 15-22.
[3] 中华人民共和国国土资源部. 2015中国矿产资源报告[M]. 北京: 地质出版社, 2015: 13-18.
[3] Ministry of Land and Resources People’s Republic of China. 2015 China Mineral Resources[M]. Beijing: Geological Publishing House, 2015: 13-18.
[4] 中华人民共和国国土资源部. 2014中国矿产资源报告[M]. 北京: 地质出版社, 2014: 13-17.
[4] Ministry of Land and Resources People’s Republic of China. 2014 China Mineral Resources[M]. Beijing: Geological Publishing House, 2014: 13-17.
[5] 中华人民共和国国土资源部. 2013中国矿产资源报告[M]. 北京: 地质出版社, 2013: 11-14,32.
[5] Ministry of Land and Resources People’s Republic of China. 2013 China Mineral Resources[M]. Beijing: Geological Publishing House, 2013: 11-14,32.
[6] 中华人民共和国国土资源部. 2012中国矿产资源报告[M]. 北京: 地质出版社, 2012: 20-29.
[6] Ministry of Land and Resources People’s Republic of China. 2012 China Mineral Resources[M]. Beijing: Geological Publishing House, 2012: 20-29.
[7] 路云阁, 李春霖, 刘采 , 等. 西藏东部地区矿产资源开发状况及其评价[J]. 生态与农村环境学报, 2016,32(3):379-382.
[7] Lu Y G, Li C L, Liu C , et al. Status of exploitation of mineral resources in east Tibet and its evaluation[J]. Journal of Ecology and Rural Environment, 2016,32(3):379-382.
[8] 何芳, 徐友宁, 乔冈 , 等. 中国矿山环境地质问题区域分布特征[J]. 中国地质, 2010,37(5):1520-1529.
[8] He F, Xu Y N, Qiao G , et al. Regional distribution characteristics of mine environmental geological problems in China[J]. Geology in China, 2010,37(5):1520-1529.
[9] 周英杰, 王晓红, 姚维岭 , 等. 山东省尾矿库遥感调查与环境影响分析[J]. 中国地质调查, 2017,4(4):88-92.
[9] Zhou Y J, Wang X H, Yao W L , et al. Remote sensing investigation and environmental impact analysis of tailing ponds in Shandong Province[J]. Geology Survey of China, 2017,4(4):88-92.
[10] 高永志, 初禹, 梁伟 . 黑龙江省矿集区尾矿库遥感监测与分析[J]. 国土资源遥感, 2015,27(1):160-163.doi: 10.6046/gtzyyg.2015.01.25.
doi: 10.6046/gtzyyg.2015.01.25
[10] Gao Y Z, Chu Y, Liang W . Remote sensing monitoring and analysis of tailings ponds in the ore concentration area of Heilongjiang Province[J]. Remote Sensing for Land and Resources, 2015,27(1):160-163.doi: 10.6046/gtzyyg.2015.01.25.
[11] 强建华 . 陕西省尾矿库遥感调查与环境影响分析[J]. 金属矿山, 2013,42(10):112-115.
[11] Qiang J H . Remote sensing investigation and environmental impact analysis of tailing dams in Shaanxi Province[J]. Metal Mine, 2013,42(10):112-115.
[12] 方雪娟, 丁镭, 张志 . 大冶陈贵镇小型尾矿库分布特征及环境影响分析[J]. 国土资源遥感, 2013,25(1):155-159.doi: 10.6046/gtzyyg.2013.01.27.
doi: 10.6046/gtzyyg.2013.01.27
[12] Fang X J, Ding L, Zhang Z . An analysis of distribution characteristics and environmental effect of small tailing ponds in Chengui town,Daye[J]. Remote Sensing for Land and Resources, 2013,25(1):155-159.doi: 10.6046/gtzyyg.2013.01.27.
[13] 郝利娜, 张志, 何文熹 , 等. 鄂东南尾矿库高分辨率遥感图像识别因子研究[J]. 国土资源遥感, 2012,24(3):154-158.doi: 10.6046/gtzyyg.2012.03.27.
doi: 10.6046/gtzyyg.2012.03.27
[13] Hao L N, Zhang Z, He W X , et al. Tailings reservoir recognition factors of the high resolution remote sensing image in southeastern Hubei[J]. Remote Sensing for Land and Resources, 2012,24(3):154-158.doi: 10.6046/gtzyyg.2012.03.27.
[14] 肖如林, 吕杰, 付卓 , 等. 张家口市尾矿库环境风险遥感监测应用研究[J]. 遥感技术与应用, 2014,29(1):100-105.
doi: 10.11873/j.issn.1004-0323.2014.1.0100
[14] Xiao R L, Lyu J, Fu Z , et al. The application of remote sensing in the environmental risk monitoring of tailings pond in Zhangjiakou City,China[J]. Remote Sensing Technology and Application, 2014,29(1):100-105.
[15] 张静, 郑春丽, 王建英 , 等. 北方稀土尾矿库周边重金属污染调查[J]. 环境科学与技术, 2016,39(4):144-148.
[15] Zhang J, Zheng C L, Wang J Y , et al. Survey of heavy metal pollution nearby a rare earth mine tailing reservoir in North China[J]. Environmental Science and Technology, 2016,39(4):144-148.
[16] 马国超, 王立娟, 马松 , 等. 矿山尾矿库多技术融合安全监测运用研究[J]. 中国安全科学学报, 2016,26(7):35-40.
[16] Ma G C, Wang L J, Ma S , et al. Research on mine tailing pond safety monitoring based on multiple technology fusion[J]. China Safety Science Journal, 2016,26(7):35-40.
[17] 王洛锋 . 尾矿库资源调查方法探讨与实践[J]. 中国钨业, 2017,32(1):55-58,74.
[17] Wang L F . Investigation methods and practice for tungsten resources in tailings reservoir[J]. China Tungsten Industry, 2017,32(1):55-58,74.
[18] 李玉凤, 包景岭, 张锦瑞 . 铁尾矿资源开发利用现状分析[J]. 中国矿业, 2015,24(11):77-81,121.
[18] Li Y F, Bao J L, Zhang J R . Status analysis of iron tailings comprehensive utilization[J]. China Mining Magazine, 2015,24(11):77-81,121.
[19] 苏建, 欧孝夺, 樊克世 , 等. 广西无主尾矿库闭库程序研究及应用[J]. 中国矿业, 2015,24(4):63-68.
[19] Su J, Ou X D, Fan K S , et al. The exploration research of optimization for ownerless tailing pond closure procedure in Guangxi[J]. China Mining Magazine, 2015,24(4):63-68.
[20] 星球地图出版社. 西藏自治区地图集[M]. 北京: 星球地图出版社, 2017: 2.
[20] Star Map Publishing House. Atlas of Tibet Autonomous Region[M]. Beijing: Star Map Publishing House, 2017: 2.
[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech