Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (3) : 104-110     DOI: 10.6046/gtzyyg.2019.03.14
|
Geo-positioning accuracy analysis of GF-4 satellite imagery
Jie HAN1, Zui TAO2(), Huina LI3, Baoliang MIAO4, Hongbin SHI1, Qiyue LIU2
1. School of Urban and Rural Planning and Landscape Architecture, Xuchang University, Xuchang 461000, China
2. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
3. School of Electric (Electromechanical) Engineering, Xuchang University, Xuchang 461000,China
4. 96608 Troops of PLA, Luoyang 471000, China
Download: PDF(4269 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The geo-positioning accuracy is an important parameter in evaluating the geometric quality of the satellite imagery. In this paper, integrating the stationary orbit and area-array image characteristics of GF-4 satellite and taking Google Earth images as geometric references, the authors analyzed the geo-positioning accuracies of multispectral camera images during and after the commissioning phase period. This study was concentrated on the relationships between the image geo-positioning accuracy and the sun azimuth angle, the sun altitude angle, the satellite azimuth angle, the satellite zenith angle, and the satellite attitude angle. Meanwhile, the influence of satellite attitude angle and imaging time on the compensation of camera’s attitude constant angle errors was discussed. The results can be used to improve the imaging model and hence are useful for the high accuracy geo-positioning of this type satellite imagery.

Keywords GF-4      geo-positioning accuracy      errors analysis     
:  TP79  
Corresponding Authors: Zui TAO     E-mail: taozui@radi.ac.cn
Issue Date: 30 August 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jie HAN
Zui TAO
Huina LI
Baoliang MIAO
Hongbin SHI
Qiyue LIU
Cite this article:   
Jie HAN,Zui TAO,Huina LI, et al. Geo-positioning accuracy analysis of GF-4 satellite imagery[J]. Remote Sensing for Land & Resources, 2019, 31(3): 104-110.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.03.14     OR     https://www.gtzyyg.com/EN/Y2019/V31/I3/104
Fig.1  Error distribution of the commissioning phase period images
影像产品号 平均误差 标准差
N方向 E方向 平面 N方向 E方向 平面
108873 -5 351.37 22 388.58 23 080.14 1 950.32 1 206.49 1 408.64
108872 -5 107.89 20 235.27 20 934.30 1 664.62 1 151.56 980.20
108864 -3 068.25 19 378.54 19 650.49 1 093.16 978.52 867.46
108868 -4 837.00 20 493.51 21 124.21 1 805.51 854.04 813.64
Tab.1  Geo-positional residuals of the commissioning phase period images(m)
Fig.2  Error distribution of the staring imaging images
Fig.3  Average geo-positional errors in plane of the staring imaging images
Fig.4  Error distribution of the long time sequence images
Fig.5  Average geo-positional errors in plane of the long time sequence images
Fig.6  Relationships between the geo-positional errors and the observation angle of the satellite and sun
Fig.7  Relationships between the geo-positional errors and the satellite attitude angles
Fig.8  Relationships between the satellite roll angle and the compensation parameters of the camera attitude constant angles
Fig.9  Relationships between the satellite pitch angle and the compensation parameters of the camera attitude constant angles
Fig.10  Relationships between the imaging time by day and the compensation parameters of the camera attitude constant angles
Fig.11  Relationships between the imaging time by hour and the compensation parameters of the camera attitude constant angles
[1] 李德仁, 童庆禧, 李荣兴 , 等. 高分辨率对地观测的若干前沿科学问题[J]. 中国科学(地球科学), 2012,42(6):805-813.
[1] Li D R, Tong Q X, Li R X , et al. Current issues in high-resolution earth observation technology[J]. Science China Earth Sciences, 2012,42(6):805-813.
[2] 童旭东 . 中国高分辨率对地观测系统重大专项建设进展[J]. 遥感学报, 2016,20(5):775-780.
[2] Tong X D . Development of China high-resolution earth observation system[J]. Journal of Remote Sensing, 2016,20(5):775-780.
[3] 王殿中, 何红艳 . “高分四号”卫星观测能力与应用前景分析[J]. 航天返回与遥感, 2017,38(1):98-106.
[3] Wang D Z, He H Y . Observation capability and application prospect of GF-4 satellite[J]. Spacecraft Recovery and Remote Sensing, 2017,38(1):98-106.
[4] 吴玮, 秦其明, 范一大 , 等. “高分四号”卫星数据产品减灾服务时效性测试[J]. 航天返回与遥感, 2016,37(4):102-109.
[4] Wu W, Qin Q M, Fan Y D , et al. Timeliness testing of GF-4 satellite data product and disaster reduction application service[J]. Spacecraft Recovery and Remote Sensing, 2016,37(4):102-109.
[5] 由佳, 张怀清, 陈永福 , 等. 基于“高分四号”卫星影像洞庭湖湿地信息提取[J]. 航天返回与遥感, 2016,37(4):116-122.
doi: 10.3969/j.issn.1009-8518.2016.04.016
[5] You J, Zhang H Q, Chen Y F , et al. Comparative study of Dongting Lake wetland information extraction based on GF-4 satellite image[J]. Spacecraft Recovery and Remote Sensing, 2016,37(4):116-122.
[6] 王密, 程宇峰, 常学立 , 等. 高分四号静止轨道卫星高精度在轨几何定标[J]. 测绘学报, 2017,46(1):53-61.
[6] Wang M, Cheng Y F, Chang X L , et al. High accuracy on-orbit geometric calibration of geostationary satellite GF4[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(1):53-61.
[7] 徐文, 龙小祥, 李庆鹏 , 等. “高分四号”卫星影像辐射与几何精度评价[J]. 航天返回与遥感, 2016,37(4):16-25.
doi: 10.3969/j.issn.1009-8518.2016.04.003
[7] Xu W, Long X X, Li Q P , et al. Image radiometric and geometric accuracy evaluation of GF-4 satellite[J]. Spacecraft Recovery and Remote Sensing, 2016,37(4):16-25.
[8] 皮英冬, 杨博, 李欣 . 基于有理多项式模型的GF4卫星区域影像平差处理方法及精度验证[J]. 测绘学报, 2016,45(12):1448-1454.
[8] Pi Y D, Yang B, Li X . Block-adjustment and accuracy validation for GF4 patch-images based on RFM[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(12):1448-1454.
[9] 韩杰, 谢勇 . GF-4卫星影像几何定位仿真分析[J].测绘通报, 2018(4):23-27.
[9] Han J, Xie Y . Analysis of geo-positioning simulation of GF-4 satellite images[J].Bulletin of Surveying and Mapping, 2018(4):23-27.
[10] Zhang Y, Zheng M, Xiong J , et al. On-orbit geometric calibration of ZY-3 three-line array imagery with multistrip data sets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(1):224-234.
[11] Yousefzadeh M, Mojaradi B . Combined rigorous-generic direct orthorectification procedure for IRS-p6 sensors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012,74(6):122-132.
[12] 韩杰, 谢勇 . GF-1卫星WFV影像几何定位稳定性研究[J].测绘通报, 2018(2):50-54.
[12] Han J, Xie Y . Study on the geo-positioning stability of GF-1 WFV images[J].Bulletin of Surveying Mapping, 2018(2):50-54.
[13] 袁修孝, 余翔 . 高分辨率卫星遥感影像姿态角系统误差检校[J]. 测绘学报, 2012,41(3):385-392.
[13] Yuan X X, Yu X . Calibration of angular systematic errors for high resolution satellite imagery[J]. Acta Geodaetica et Cartographica Sinica, 2012,41(3):385-392.
[14] 韩杰, 谢勇, 吴国玺 , 等. 国产高分辨率卫星影像几何定位研究[J]. 国土资源遥感, 2016,28(4):100-107.doi: 10.6046/gtzyyg.2016.04.16.
doi: 10.6046/gtzyyg.2016.04.16
[14] Han J, Xie Y, Wu G X , et al. Geo-positioning accuracy analysis for domestic high-resolution satellite imagery[J]. Remote Sensing for Land and Resources, 2016,28(4):100-107.doi: 10.6046/gtzyyg.2016.04.16.
[15] 常学立 . 静止轨道高分辨率面阵相机几何处理关键技术研究[D]. 武汉:武汉大学, 2015.
[15] Chang X L . Research on Key Technologies of Geometric Processing for High-Resolution Area-Array Camera of Stationary Orbit Satellite[D]. Wuhan:Wuhan University, 2015.
[1] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[2] REN Chaofeng, PU Yuchi, ZHANG Fuqiang. A method for extracting match pairs of UAV images considering geospatial information[J]. Remote Sensing for Natural Resources, 2022, 34(1): 85-92.
[3] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[4] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] JIANG Na, CHEN Chao, HAN Haifeng. An optimization method of DEM resolution for land type statistical model of coastal zones[J]. Remote Sensing for Natural Resources, 2022, 34(1): 34-42.
[7] WU Fang, LI Yu, JIN Dingjian, LI Tianqi, GUO Hua, ZHANG Qijie. Application of 3D information extraction technology of ground obstacles in the flight trajectory planning of UAV airborne geophysical exploration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 286-292.
[8] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[9] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[10] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[11] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[12] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[13] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[14] SUN Yiming, ZHANG Baogang, WU Qizhong, LIU Aobo, GAO Chao, NIU Jing, HE Ping. Application of domestic low-cost micro-satellite images in urban bare land identification[J]. Remote Sensing for Natural Resources, 2022, 34(1): 189-197.
[15] ZHENG Xiucheng, ZHOU Bin, LEI Hui, HUANG Qiyu, YE Haolin. Extraction and spatio-temporal change analysis of the tidal flat in Cixi section of Hangzhou Bay based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 18-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech