Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (3) : 111-122     DOI: 10.6046/gtzyyg.2019.03.15
|
Extraction of buildings in remote sensing imagery based on multi-level segmentation and classification hierarchical model and feature space optimization
Tao DANG1,2, Qi SONG1, Yong LIU2, Anjian XU1, Bo XU1, Honggang ZHANG1
1. Xi’an Information Technique Institute of Surveying and Mapping, Xi’an, 710054, China;
2. College of Earth and Enviromental Sciences, Lanzhou University, Lanzhou 730000, China
Download: PDF(9150 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In view of the problems of scale effect, spectral diversity and classification feature optimization in the extraction of urban objects information from high spatial resolution remote sensing images,the authors, based on the object-based image analysis method and combined with data mining and machine learning,propose a multi-level segmentation and classification hierarchical model and its feature space optimization method for building extraction. First, according to the multi-scale characteristics of remote sensing information, a hierarchical relationship is set up for the difference of features of ground objects, and then a hierarchical structure based on information segmentation and classification is established based on the characteristics of spectral diversity to define the subtypes of ground objects. After that, the proposed Relief F-PSO combination feature selection method is used. Finally,on the basis of multiscale segmentation and feature optimization, the water surface distribution is obtained based on the random forest model, and finally the building information is extracted by the J48 decision tree algorithm. Experimental results show that the method can utilize a small number of image feature attributes to get high-precision building extraction results.

Keywords object-based image analysis      buildings      segmentation and classification hierarchical model      feature selection     
:  TP79  
Issue Date: 30 August 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tao DANG
Qi SONG
Yong LIU
Anjian XU
Bo XU
Honggang ZHANG
Cite this article:   
Tao DANG,Qi SONG,Yong LIU, et al. Extraction of buildings in remote sensing imagery based on multi-level segmentation and classification hierarchical model and feature space optimization[J]. Remote Sensing for Land & Resources, 2019, 31(3): 111-122.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.03.15     OR     https://www.gtzyyg.com/EN/Y2019/V31/I3/111
层次 地物类别 分割参数 影像特征 分类算法 目标类别
尺度层1 建筑物、道路、裸地、植被、水体、阴影…… 尺度因子a
形状因子b
紧凑度因子c
光谱特征
形状特征
纹理特征
RF算法 不透水面
(建筑物、
道路、裸地)
尺度层2 建筑物(蓝顶、红顶、灰顶……) 尺度因子p
形状因子q
紧凑度因子k
光谱特征
形状特征
纹理特征
空间关系(阴影)
J48决策树 建筑物
道路(沥青路、水泥路……)
裸地(亮、暗……)
Tab.1  Hierarchical image segmentation classification structure
Fig.1  Relief F-PSO feature selection algorithm flow chart
Fig.2  Study area image with WorldView3 B3(R),B2(G),B1(B)
Fig.3  Relationship between ED2 value and scale
Fig.4  Study area building extraction segmentation hierarchical graph
Fig.5  Image segmentation results(partial)
Fig.6  Mean value and brightness box diagram of each band of typical features
Fig.7  Mean value diagram of each band of typical figure
Fig.8  Characteristic importance degree analysis chart
Fig.9  Characteristic analysis diagram of typical feature samples
Fig.10  Relationship between the overall accuracy and the Kappa coefficient and the number of features
类别 特征 合计
光谱特征 蓝波段均值、蓝波段比率、绿波段比率、红波段比率、近红外比率、蓝波段标准差 6
指数特征 NDVI,NDGI 2
纹理特征 GLCM对比度45°、GLCM对比度135°、GLCM均值45°、GLCM均值135°、GLCM标准差45°、GLCM标准差135°、GLCM 同质性90°、GLCM异质性135°、GLCM相关性45°、GLCM相关性90° 10
Tab.2  Optimal feature sets for impervious classes
Fig.11  Impervious ground extraction results based on random forests
类别 特征 合计
光谱特征 近红外均值、蓝波段比率、绿波段比率、近红外标准差 4
形状特征 密度 1
纹理特征 GLCM 标准差90°、GLCM标准差135°、GLCM角二阶矩90° 3
Tab.3  Optimal feature sets for building classes
Fig.12  Typical feature sample analysis
地物类别 规则集 规则描述
蓝顶建筑物 规则1 蓝波段比率>0.2189; 绿波段比率≤0.231; 近红外均值>2392.0838
红顶建筑物 规则1 蓝波段比率≤0.2189; 绿波段比率≤0.204; 近红外标准差>161.0697
灰顶建筑物 规则1 蓝波段比率>0.2189; 绿波段比率>0.231
沥青路 规则1 蓝波段比率>0.2189; 绿波段比率≤0.231; 近红外均值≤2392.0838
水泥路 规则1 蓝波段比率≤0.2189; 绿波段比率>0.204; GLCM角二阶矩90°>0.0004; 密度≤1.7418
亮裸地 规则1 蓝波段比率≤0.2189; 绿波段比率>0.204; GLCM 角二阶矩 90°≤0.0004;
暗裸地 规则1 蓝波段比率≤0.2189; 绿波段比率≤0.204; 近红外标准差≤161.0697
规则2 蓝波段比率≤0.2189; 绿波段比率>0.204; GLCM角二阶矩90°>0.0004; 密度>1.7418
Tab.4  Feature extraction rule set
Fig.13  Final building extraction results
Fig.14  Building extraction results from different classification methods
评价指标 本文方法 单一尺度层 经验特征 地物属概念
特征数量/个 尺度层1 18 14 24 18
尺度层2 8 23 15
平均值 13 14 23.5 16.5
精度评价/% 错分率 24.02 46.65 38.16 26.25
漏分率 8.96 13.40 21.74 24.94
完整率 91.77 88.18 82.14 80.03
准确率 80.64 68.19 72.38 79.20
Tab.5  Statistical comparison of data related from different classification methods
[1] 王俊, 秦其明, 叶昕 , 等. 高分辨率光学遥感图像建筑物提取研究进展[J]. 遥感技术与应用, 2016,31(4):653-660.
doi: 10.11873/j.issn.1004-0323.2016.4.0653
[1] Wang J, Qin Q M, Ye X , et al. A survey of building extraction methods from optical high resolution remote sensing imagery[J]. Remote Sensing Technology and Application, 2016,31(4):653-662.
[2] 孙庆玲, 冯险峰 . 基于GeoEye-1影像的城区建筑物提取方法研究[J]. 遥感信息, 2013,28(4):8-12.
[2] Sun Q L, Feng X F . Extraction of urban building based on GeoEye-1 image[J]. Remote Sensing Information, 2013,28(4):8-12.
[3] 郭怡帆, 张锦, 卫东 . 面向对象的高分辨遥感影像建筑物轮廓提取研究[J]. 测绘通报, 2014,( s2):300-303.
[3] Guo Y F, Zhang J, Wei D . The research of object-oriented building contour extraction of high-resolution remote sensing image[J].Bulletin of Surveying and Mapping, 2014(s2):300-303.
[4] 唐羊洋, 叶华平, 吴书金 , 等. 基于波段与形状特征的遥感影像建筑物分类提取[J]. 后勤工程学院学报, 2016,32(1):93-96.
[4] Tang Y Y, Ye H P, Wu S J , et al. Building classification and extraction form remote sensing image based on wave range and shape features[J]. Journal of Logistical Engineering University, 2016,32(1):93-96.
[5] 王宏涛, 王变利 . 融合LiDAR和多光谱影像的建筑物自动检测[J]. 测绘科学, 2015,40(8):64-67.
[5] Wang H T, Wang B L . Automatic building detection fusing LiDAR and multispectral imagery[J]. Science of Surveying and Mapping, 2015,40(8):64-67.
[6] 王旭东, 段福洲, 屈新原 , 等. 面向对象和SVM结合的无人机数据建筑物提取[J]. 国土资源遥感, 2017,29(1):97-101.doi: 10.6046/gtzyyg.2017.01.15.
[6] Wang X D, Duan F Z, Qu X Y , et al. Building extraction based on UAV imagery data with the synergistic use of objected-based method and SVM clsssifier[J]. Remote Sensing for Land and Resources, 2017,29(1):97-101.doi: 10.6046/gtzyyg.2017.01.15.
[7] Turker M, Koc-San D . Building extraction from high-resolution optical spaceborne images using the integration of support vector machine (SVM) classification,Hough transformation and perceptual grouping[J]. International Journal of Applied Earth Observation and Geoinformation, 2016,34:58-69.
[8] Dornaika F, Moujahida A, Merabet Y E , et al. Building detection from orthophotos using a machine learning approach:An empirical study on image segmentation and descriptors[J]. Expert Systems With Applications, 2016,58:130-142.
[9] Chen L, Zhao S H, Han W Q , et al. Building detection in an urban area using LiDAR data and QuickBird imagery[J]. International Journal of Remote Sensing, 2012,33:5135-5148.
[10] Awrangjeb M, Zhang C, Fraser C S . Automatic extraction of building roofs using LiDAR data and multispectral imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013,83:1-18.
[11] 胡婷 . 遥感图像典型地物特征提取的尺度效应研究[D]. 西安:西北大学, 2010.
[11] Hu T . The Study of Scale Effects in Typical Objects’ Feature Extraction from Remote Sensing Image[D]. Xi’an:Northwest University, 2010.
[12] 黄慧萍, 吴炳方 . 地物提取的多尺度特征遥感应用分析[J]. 遥感技术与应用, 2003,18(5):276-281.
[12] Huang H P, Wu B F . Analysis of the mutli-scale characteristics with objects extraction[J]. Remote Sensing Technology and Application, 2003,18(5):276-281.
[13] 李秦, 高锡章, 张涛 , 等. 最优分割尺度下的多层次遥感地物分类实验分析[J]. 地球信息科学学报, 2011,13(3):409-416.
doi: 10.3724/SP.J.1047.2011.00409
[13] Li Q, Gao X Z, Zhang T , et al. Optimal segmentation scale selection and evaluation for multi-layer image recognition and classification[J]. Journal of Geo-Information Science, 2011,13(3):409-416.
[14] 吴俐民, 左小清, 倪曙 , 等. 卫星遥感影像专题信息提取技术与应用[M]. 成都: 西南交通大学出版社, 2013.
[14] Wu L M, Zuo X Q, Ni S , et al. Special Information Extraction Technology and Application of Satellite Remote Sensing Images[M]. Chengdu: Southwest Jiaotong University press, 2013.
[15] 吕凤华, 舒宁, 龚龑 , 等. 利用多特征进行航空影像建筑物提取[J]. 武汉大学学报信息科学版, 2017,42(5):656-660.
[15] Lyu F H, Shu N, Gong Y , et al. Regular building extraction from high resolution image based on multilevel-features[J]. Geomatics and Information Science of Wuhan University, 2017,42(5):656-660.
[16] 吴炜, 骆剑承, 沈占锋 等. 光谱和形状特征相结合的高分辨遥感图像的建筑物提取方法[J]. 武汉大学学报信息科学版, 2012,37(7):800-804.
[16] Wu W, Luo J C, Shen Z F , et al. Building extraction from high resolution remote sensing imagery based on spatial-spectral method[J]. Geomatics and Information Science of Wuhan University, 2012,37(7):800-805.
[17] 谭衢霖 . 高分辨率多光谱影像城区建筑物提取研究[J]. 测绘学报, 2010,39(6):618-623.
[17] Tan Q L . Urban building extraction from VHR multi-spectral images using object-based classification[J]. Acta Geodaetica et Cartographica Sinica, 2010,39(6):618-623.
[18] 蒋胜利 . 高维数据的特征选择与特征提取研究[D]. 西安:西安电子科技大学, 2011.
[18] Jiang S L . Research on Feature Selection and Feature Extraction for High-Dimensional Data[D]. Xi’an:Xidian University, 2011.
[19] 刘舒, 姜琦刚, 马玥 , 等. 基于多目标遗传随机森林特征选择的面向对象湿地分类[J]. 农业机械学报, 2017,48(1):119-127.
[19] Liu S, Jiang Q G, Ma Y , et al. Object-oriented wetland classification based on hybrid feature selection method combing with Relief F,multi-objective genetic algorithm and random forest[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(1):119-127.
[20] 薛章鹰, 刘兴权 . 结合ReliefF、GA和SVM的面向对象建筑物目标识别特征选择方法[J]. 测绘工程, 2017,26(2):52-56.
[20] Xue Z Y, Liu X Q . Feature selection method for object-oriented building targets recognition based on ReliefF,GA and SVM[J]. Engineering of Surveying and Mapping, 2017,26(2):52-56.
[21] 吴卿 . 基于高分辨率遥感影像的水土保持生态建设监测方法研究[D]. 北京:北京林业大学, 2007.
[21] Wu Q . Study on Monitoring Method for Ecological Construction of Water and Soil Conservation Based On High-Resolution Remote Sensing Images[D]. Beijing:Beijing Forestry University, 2007.
[22] 李晓霞, 汪云甲 . 面向对象的高分辨率影像采煤塌陷地提取[J]. 计算机工程与应用, 2011,47(23):239-241.
doi:
[22] Li X X, Wang Y J . Coal mine subsidence area extraction for high-resolution remote sensing imagery based on object-oriented classification method[J]. Computer Engineering and Application, 2011,47(23):239-241.
[23] 肖艳, 姜琦刚, 王斌 , 等. 基于ReliefF和PSO混合特征选择的面向对象土地利用分类[J]. 农业工程学报, 2016,32(4):211-215.
[23] Xiao Y, Jiang Q G, Wang B , et al. Object based land-use classification based on hybrid feature selection method of combining ReliefF and PSO[J]. Transaction of the Chinese Society of Agricultural Engineering, 2016,32(4):211-215.
[24] Liu Y, Bian L, Meng Y , et al. Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2012(68):144-156.
[25] 孙宇翼, 赵军利, 王苗苗 , 等. 基于J48决策树的面向对象方法的土地覆被信息提取[J]. 国土资源遥感, 2016,28(4):156-63.doi: 10.6046/gtzyyg.2016.04.24.
doi: 10.6046/gtzyyg.2016.04.24
[25] Sun Y Y, Zhao J L, Wang M M , et al. Land cover information extraction from remote sensing images using object-based image analysis method integrated with decision tree[J]. Remote Sensing for Land and Resources, 2016,28(4):156-63.doi: 10.6046/gtzyyg.2016.04.24.
[26] 袁梅宇 . 数据挖掘与机器学习:WEKA应用技术与实践[M]. 2版.北京: 清华大学出版社, 2016: 85-94.
[26] Yuan M Y. Data Mining and Machine Learning:WEKA Application Technology and Practice[M].2nd ed. Beijing: Tsinghua University Press, 2016: 85-94.
[1] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[2] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[3] GUO Wen, ZHANG Qiao. Building extraction using high-resolution satellite imagery based on an attention enhanced full convolution neural network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 100-107.
[4] Rui LIU, Xu JIANG, Jing ZHAO, Yunfan LI. GIS based research on the spatial distribution of population density in illegal buildings in Shenzhen City[J]. Remote Sensing for Land & Resources, 2018, 30(1): 233-237.
[5] SUN Na, GAO Zhiqiang, WANG Xiaojing, LUO Zhidong. High-precise extraction for water on the Loess Plateau region from high resolution satellite image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 173-178.
[6] SUN Yuyi, ZHAO Junli, WANG Miaomiao, LIU Yong. Land cover information extraction from remote sensing images using object-based image analysis method integrated with decision tree[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 156-163.
[7] TIAN Shaohong, ZHANG Xianfeng. Random forest classification of land cover information of urban areas in arid regions based on TH-1 data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 43-49.
[8] ZHANG Xi, LIU Shunxi, CHEN Ge, WANG Zhongwu, YOU Shucheng. Block feature usage in new construction land change detection supplemented by land use data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 98-103.
[9] CHEN Yiguo. Crack detection above buildings based on the infrared thermal imaging technology[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 53-56.
[10] WU Bo, ZHU Qin-Dong, GAO Hai-Yan, ZHOU Xiao-Cheng. FEATURE SELECTION BASED ON MAXIMAL MUTUAL INFORMATION
CRITERION IN OBJECT-ORIENTED CLASSIFICATION
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(3): 30-34.
[11] YU Hai-Yang, GAN Fu-Ping, WU Fa-Dong, DANG Fu-Xing. THE PERFORMANCE OF OBJECT-BASED CLASSIFIERS IN THE CLASSIFICATION OF VHSR IMAGE[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(2): 30-34.
[12] CAO Kai, JIANG Nan, LI Xin-Guo, LV Heng. A MODEL FOR AUTOMATIC EXTRACTION OF WATER
INFORMATION FORM THE CITY ZONE BASED ON SPOT-5 IMAGE
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2005, 17(4): 24-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech