Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (3) : 123-131     DOI: 10.6046/gtzyyg.2019.03.16
|
Comparison and validation of the methods for estimating surface albedo from HJ-1 A/B CCD data
Xianlei FAN, Hongbo YAN, Ying QU()
School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
Download: PDF(5118 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

High spatial resolution surface albedo datasets are of critical importance for weather forecast and global climate change studies. The Chinese Huanjing-1 satellites (HJ-1 A/B) can provide wide swath, short revisit time, and high spatial resolution (30 m) remote sensing observations, and hence can be considered as a perfect input data source for generating high spatial resolution surface albedo datasets. In this study, the authors compared and evaluated two methods for estimating surface albedo from HJ-1 A/B CCD data: the direct estimation algorithm from surface reflectance (DEA-SUR) and the method based on MODIS kernel coefficients (MKC). The visual interpretation and clarity index methods were employed for evaluating the fineness of the images. The results show that the clarity and fineness of imagery were greatly improved by the DEA-SUR and MKC methods, compared with the MODIS surface albedo products. It has been demonstrated that the DEA-SUR method is much better than MKC method in avoiding the mosaic effects. Four sites (US-MMS, CN-Cng, Yingke, and Namco) were used for validating and comparing the DEA-SUR and MKC methods. The results show that the DEA-SUR method and the MKC method have similar estimation accuracies during the snow-free period (root mean squared error (RMSE) is 0.015~0.041). In contrast, the estimation error is much larger during the snow-covered period.

Keywords surface albedo      HJ-1 A/B      high spatial resolution      direct estimation algorithm      validation     
:  TP79  
Corresponding Authors: Ying QU     E-mail: quy100@nenu.edu.cn
Issue Date: 30 August 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xianlei FAN
Hongbo YAN
Ying QU
Cite this article:   
Xianlei FAN,Hongbo YAN,Ying QU. Comparison and validation of the methods for estimating surface albedo from HJ-1 A/B CCD data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 123-131.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.03.16     OR     https://www.gtzyyg.com/EN/Y2019/V31/I3/123
Fig.1  Flowchart of the DEA
Fig.2  Flowchart of the method based on MKC
站点名称 纬度 经度 地表覆
盖类型
数据观
测时间
US-MMS N39.323 2° W86.413 1° 落叶阔叶林 1999—2014年
长岭 N44.593 4° E123.509 2° 草地 2007—2010年
盈科 N38.857 1° E100.410 3° 农田 2008—2009年
纳木错 N30.772 7° E90.962 9° 高寒草甸 2009.12—2010.2
Tab.1  Information of the in situ measurements sites
Fig.3  Google Earth imageries in situ measurements sites
Fig.4  False color imagery with B4(R),B3(G),B2(B) of HJ-1A CCD in Zhangye City
Fig.5  Comparison of the surface albedo datasets (white-sky albedo) in Zhangye City
Fig.6  Variation of surface albedo with the spatial resolution
Fig.7  Variations of surface albedo with spatial resolutions
Fig.8  Comparison of the albedo by DEA-SUR, MKC and MODIS product with the in situ measurements at US-MMS site
Fig.9  Comparison of the albedo by DEA-SUR, MKC and MODIS product with the in situ measurements at CN-Cng site
Fig.10  Comparison of the albedo by DEA-SUR, MKC and MODIS product with the in situ measurements at Yingke site
Fig.11  Comparison of the albedo by DEA-SUR, MKC and MODIS product with the in situ measurements at Namco site
[1] Dickinson R E . Land surface processes and climate-surface albedos and energy balance[J]. Advances in Geophysics, 1983,25:305-353.
[2] Qu Y, Liang S, Liu Q , et al. Mapping surface broadband albedo from satellite observations:A review of literatures on algorithms and products[J]. Remote Sensing, 2015,7(1):990-1020.
[3] Schaaf C, Gao F, Strahler A , et al. First operational BRDF,albedo nadir reflectance products from MODIS[J]. Remote Sensing of Environment, 2002,83(1-2):135-148.
[4] Liu Q, Wang L, Qu Y , et al. Preliminary evaluation of the long-term GLASS albedo product[J]. International Journal of Digital Earth, 2013,6(s1):69-95.
[5] Qu Y, Liu Q, Liang S , et al. Direct-estimation algorithm for mapping daily land-surface broadband albedo from MODIS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(2):907-919.
[6] Riihelä A, Manninen T, Laine V , et al. CLARA-SAL:A global 28 yr timeseries of Earth’s black-sky surface albedo[J]. Atmospheric Chemistry and Physics, 2013,13(7):3743-3762.
[7] Shuai Y, Masek J G, Gao F , et al. An algorithm for the retrieval of 30-m snow-free albedo from Landsat surface reflectance and MODIS BRDF[J]. Remote Sensing of Environment, 2011,115(9):2204-2216.
[8] He T, Liang S, Wang D , et al. Evaluating land surface albedo estimation from Landsat MSS,TM,ETM+,and OLI data based on the unified direct estimation approach[J]. Remote Sensing of Environment, 2018,204:181-196.
[9] 孙长奎, 刘强, 闻建光 , 等. 基于HJ-1CCD数据的地表反照率反演[J]. 国土资源遥感, 2013,25(4):58-63.doi: 10.6046/gtzyyg.2013.04.10.
doi: 10.6046/gtzyyg.2013.04.10
[9] Sun C K, Liu Q, Wen J G , et al. An algorithm for retrieving land surface albedo from HJ-1 CCD data[J]. Remote Sensing for Land and Resources, 2013,25(4):58-63.doi: 10.6046/gtzyyg.2013.04.10.
[10] He T, Liang S, Wang D , et al. Land surface albedo estimation from Chinese HJ satellite data based on the direct estimation approach[J]. Remote Sensing, 2015,7(5):5495-5510.
[11] Gao B, Jia L, Wang T . Derivation of land surface albedo at high resolution by combining HJ-1A/B reflectance observations with MODIS BRDF products[J]. Remote Sensing, 2014,6(9):8966-8985.
[12] 张虎, 焦子锑, 李小文 , 等. 先验知识估算HJ-1 CCD数据地表反照率[J]. 遥感学报, 2013,17(2):286-305.
doi: 10.11834/jrs.20131210
[12] Zhang H, Jiao Z D, Li X W , et al. A priori knowledge application in the retrieval of surface albedo using HJ-1 CCD data[J]. Journal of Remote Sensing, 2013,17(2):286-305.
[13] Qu Y, Liang S, Liu Q , et al. Estimating Arctic sea-ice shortwave albedo from MODIS data[J]. Remote Sensing of Environment, 2016,186:32-46.
[14] Lewis P, Barnsley M J . Influence of the sky radiance distribution on various formulations of the Earth surface albedo [C]//Proceedings of the Conference on Physical Measurements and Signatures in Remote Sensing.France:ISPRS, 1994: 707-715.
[15] Pizurica A, Vanhamel I, Sahli H , et al. A Bayesian approach to nonlinear diffusion based on a Laplacian prior for ideal image gradient [C]//IEEE 13th Workshop on Statistical Signal Processing.Bordeaux:IEEE, 2005: 477-482.
[16] Lucht W, Schaaf C, Strahler A . An algorithm for the retrieval of albedo from space using semiempirical BRDF models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000,38(2):977-998.
[17] Jiao Z, Zhang X, Bréon F M , et al. The influence of spatial resolution on the angular variation patterns of optical reflectance as retrieved from MODIS and POLDER measurements[J]. Remote Sensing of Environment, 2018,215:371-385.
[1] DENG Xiaojin, JING Changqing, GUO Wenzhang, Yan Yujiang, CHEN Chen. Surface albedos of different land use types in the Junggar Basin[J]. Remote Sensing for Natural Resources, 2021, 33(3): 173-183.
[2] WEN Yanan, CHE Yahui, GUANG Jie, ZHANG Xiaomei, LI Zhengqiang. Quality evaluation of forest cover products over China[J]. Remote Sensing for Land & Resources, 2020, 32(3): 32-38.
[3] Hui YUAN, Qiming QIN, Yuanheng SUN. Validation of LAI retrieval results of winter wheat in Yancheng, Luohe area of Henan Province[J]. Remote Sensing for Land & Resources, 2020, 32(1): 162-168.
[4] Bingxiu YAO, Liang HUANG, Yansong XU. A high resolution remote sensing image segmentation method based on superpixel and graph theory[J]. Remote Sensing for Land & Resources, 2019, 31(3): 72-79.
[5] Baoquan WEI, Anning SUO, Ying LI, Jianhua ZHAO. Research on the application of LBV transformation in domestic ZY-3 satellite images[J]. Remote Sensing for Land & Resources, 2019, 31(3): 87-94.
[6] Linlin LIANG, Liming JIANG, Zhiwei ZHOU, Yuxing CHEN, Yafei SUN. Object-oriented classification of unmanned aerial vehicle image for thermal erosion gully boundary extraction[J]. Remote Sensing for Land & Resources, 2019, 31(2): 180-186.
[7] Ye LYU, Xiangyun HU. Road extraction by incremental Markov random field segmentation from high spatial resolution remote sensing images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 76-82.
[8] Kun LU, Qingyan MENG, Yunxiao SUN, Zhenhui SUN, Linlin ZHANG. Estimating leaf area index of wheat at the booting stage using GF-2 data: A case study of Langfang City,Hebei Province[J]. Remote Sensing for Land & Resources, 2018, 30(1): 196-202.
[9] YIN Feng, CAO Liqin, Liang Peng. Application of improved Welsh’s color transfer algorithm to GF-2 image fusion[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 126-131.
[10] SUN Na, GAO Zhiqiang, WANG Xiaojing, LUO Zhidong. High-precise extraction for water on the Loess Plateau region from high resolution satellite image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 173-178.
[11] SU Tengfei, ZHANG Shengwei, LI Hongyu. Variable scale Mean-Shift based method for cropland segmentation from high spatial resolution remote sensing images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 41-50.
[12] JINAG Wei, HE Guojin, LONG Tengfei, YIN Ranyu, SONG Xiaolu, YUAN Yiqin, LING Saiguang. Ortho accuracy validation and analysis of GF-2 PAN imagery based on Beidou satellite navigation system and GPS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 211-216.
[13] YANG Qingshan, ZHANG Hua. A new method for classification of high spatial resolution remotely sensed imagery based on fusion of shape and spectral information of pixels[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 64-70.
[14] DENG Zeng, LI Dan, KE Yinghai, WU Yanchen, LI Xiaojuan, GONG Huili. An improved SVM algorithm for high spatial resolution remote sensing image classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 12-18.
[15] REN Zhe, CHEN Huailiang, WANG Lianxi, LI Ying, LI Qi. Research on inversion model of wheat LAI using cross-validation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 34-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech