Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (3) : 166-173     DOI: 10.6046/gtzyyg.2019.03.21
|
Application of the theory of structural hierarchy to the remote sensing geology
Jianyu LIU1,2, Ling CHEN2(), Wei LI2, Genhou WANG1, Bo WANG1
1. School of Earth Sciences and Resources, China University of Geoscience, Beijing 100083, China
2. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
Download: PDF(8941 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

It is difficult to identify the relative ages of lithological units only relying on remote sensing images with few reference data. In case of lack of geological references and difficult fieldwork, it is limited to use remote sensing images for interpretation. To solve these problems, the authors firstly introduced the theory of structural hierarchy to geological interpretation and presented a new method to classify the regional structures and small-scale structures extracted from OLI and GF-2 data respectively. To some extent, this method can determine the relative ages of the lithological units, the events of tectonic evolution and the advantageous areas for metallogenesis in the areas with only a few geological reference data. And it provides a new way for exploiting the advantages of high ground resolution of GF-2 so as to promote the development of remote sensing geology in foreign areas.

Keywords Structure hierarchy      GF-2      interpretation of structures      remote sensing geological survey     
:  TP79  
Corresponding Authors: Ling CHEN     E-mail: chenling010@126.com
Issue Date: 30 August 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jianyu LIU
Ling CHEN
Wei LI
Genhou WANG
Bo WANG
Cite this article:   
Jianyu LIU,Ling CHEN,Wei LI, et al. Application of the theory of structural hierarchy to the remote sensing geology[J]. Remote Sensing for Land & Resources, 2019, 31(3): 166-173.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.03.21     OR     https://www.gtzyyg.com/EN/Y2019/V31/I3/166
Fig.1  Sketch regional geological map of the Beishan orogenic belt and the location of the study area (modified after reference [8])
Fig.2  Sketch geological map of the study area
传感器 波段序号 波长范围/μm 空间分辨率/m 幅宽/km
OLI 8(Pan) 0.500~0.680 15 185
1 0.433~0.453 30
2 0.450~0.515
3 0.525~0.600
4 0.630~0.680
5 0.850~0.880
6 1.560~1.660
7 2.100~2.300
9 1.360~1.390
GF-2 Pan 0.450~0.900 0.81 45
1 0.450~0.520 3.24
2 0.520~0.590
3 0.630~0.690
4 0.770~0.890
Tab.1  Parameters of OLI data and GF-2 data
Fig.3  Images of GF-2 and OLI FLAASH after atmospheric correction
Fig.4  Images composited with B2(R),B1(G),B5(B) after MNF transformation
Fig.5  Detailed interpretation of GF-2 image
构造层次 构造类型
上部构造层次 NE,NW向脆性断裂
中部构造层次 等厚褶皱
下部构造层次上层 劈理、韧性断裂、顶厚褶皱
下部构造层次下层 揉流褶皱
Tab.2  Classification of the structures recognized in the study area
Fig.6  Structure classification based on the theory of structural hierarchy
Fig.7  Photographs taken in the field
[1] Liu L, Zhou J, Han L , et al. Mineral mapping and ore prospecting using Landsat TM and Hyperion data,Wushitala,Xinjiang,northwestern China[J]. Ore Geology Reviews, 2017,81:280-295.
[2] Zhang T, Yi G, Li H , et al. Integrating data of Aster and Landsat-8 OLI (AO) for hydrothermal alteration mineral mapping in duolong porphyry Cu-Au deposit,Tibetan plateau,China[J]. Remote Sensing, 2016,8(12):890.
[3] Pour A B, Hashim M, Hong K J , et al. Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data:North-eastern Graham Land,Antarctic Peninsula[J]. Ore Geology Reviews, 2019,108:112-133.
[4] 刘新星, 陈建平, 曾敏 , 等. 基于多源遥感数据的西藏羌多地区地质构造解译[J]. 国土资源遥感, 2015,27(3):154-160.doi: 10.6046/gtzyyg.2015.03.24.
doi: 10.6046/gtzyyg.2015.03.24
[4] Liu X X, Chen J P, Zeng M , et al. Geological structural interpretation of Qiangduo area in Tibet based on multi-source remote sensing data[J]. Remote Sensing for Land and Resources, 2015,27(3):154-160.doi: 10.6046/gtzyyg.2015.03.24.
[5] 张楠楠, 周可法 . 基于ASTER数据的斑岩铜矿蚀变分带识别方法研究[J]. 地质科学, 2016,51(3):990-1001.
doi: 10.12017/dzkx.2016.043
[5] Zhang N N, Zhou K F . Research on identification methods of porphyry alteration zones based on ASTER data[J]. Chinese Journal of Geology, 2016,51(3):990-1001.
[6] 任广利, 杨军录, 杨敏 , 等. 高光谱遥感异常提取在甘肃北山金滩子—明金沟地区成矿预测中的应用[J]. 大地构造与成矿学, 2013,37(4):765-776.
[6] Ren G L, Yang J L, Yang M , et al. Application of hyperspectral remote sensing anomaly information on metallogenic prediction in the Jintanzi-Mingjingou area of Beishan,Gansu[J]. Geotectonica Et Metallogenia, 2013,37(4):765-776.
[7] 马托埃, 孙坦, 张道安 . 地壳变形[M].地质出版社, 1984.
[7] Mattauer M, Sun T, Zhang D A. Crust Deformation[M].Geological Publishing House. 1984.
[8] Xiao W J, Mao Q G, Windley B F , et al. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 2010,310(10):1553-1594.
[9] 新疆地质矿产局. 白山幅1/20万区域调查报告[R]. 乌鲁木齐:新疆地质矿产局, 1979.
[9] Xinjiang Bureau of Geology and Mineral Resources . The Report of Regional Geology Survey in Baishan Region(1:200 000)[R]. Urumqi:Xinjiang Bureau of Geology and Mineral Resources, 1979.
[10] 新疆地质矿产局. 白玉山幅1/20万区域调查报告[R]. 乌鲁木齐:新疆地质矿产局, 1979.
[10] Xinjiang Bureau of Geology and Mineral Resources. The Report of Regional Geology Survey in Baiyushan Region(1:200 000)[R]. Urumqi:Xinjiang Bureau of Geology and Mineral Resources, 1979.
[11] 丁建华, 邢树文, 肖克炎 , 等. 东天山—北山Cu-Ni-Au-Pb-Zn成矿带主要成矿地质特征及潜力分析[J]. 地质学报, 2016,90(7):1392-1412.
[11] Ding J H, Xing S W, Xiao K Y , et al. Geological characteristics and resource potential analysis of the Dongtianshan-Beishan Cu-Ni-Au-Pb-Zn metallogenic betls[J]. Acta Geologica Sinica, 2016,90(7):1392-1412.
[12] 王兆洲, 安国堡 . 甘肃北山南带西段金成矿带控矿因素及成矿预测[J]. 新疆地质, 2007,25(3):307-312.
[12] Wang Z Z, An G B . Ore controlling factors and minerogenic prognosis of western metallogenic belt of south belt of Beishan,Gansu[J]. Xinjiang Geology, 2007,25(3):307-312.
[13] 肖惠良, 周济元 . 新疆红十井金矿床特征及原因[J]. 矿床地质, 2003,22(1):32-40.
[13] Xiao H L, Zhou J Y . Characteristics and causes of the red well gold deposit in Xinjiang[J]. Mineral Deposits, 2003,22(1):32-40.
[14] 何格, 顾雪祥, 章永梅 , 等. 新疆北山地区大青山金矿床地质特征及成因初探[J].矿床地质, 2014(S1):89-90.
[14] He G, Gu X X, Zhang Y M , et al. Geological characteristics and genesis of the Mount Daqing gold deposit in Beishan area,Xinjiang[J].Mineral Deposits, 2014(S1):89-90.
[15] 陈柏林, 杨农, 吴淦国 , 等. 甘肃北山南带韧性剪切带型金矿床构造控矿解析[J]. 矿床地质, 2002,21(2):149-158.
[15] Chen B L, Yang N, Wu G G , et al. Analysis of ore-controlling structure in ductile shear zone type gold deposits in southern Beishan area,Gansu Province[J]. Mineral Deposits, 2002,21:149-158.
[16] Khan S D, Mahmood K . The application of remote sensing techniques to the study of ophiolites[J]. Earth-Science Reviews, 2008,89(3-4):135-143.
[17] Kumar C, Shetty A, Raval S , et al. Lithological discrimination and mapping using ASTER SWIR data in the Udaipur area of Rajasthan,India[J]. Procedia Earth and Planetary Science, 2015,11:180-188.
[18] Rajendran S, Al-Khirbash S, Pracejus B , et al. ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains:Exploration strategy[J]. Ore Geology Reviews, 2012,44:121-135.
[19] 陈柏林 . 甘新北山金窝子韧性剪切带型金矿床成因[J].矿床地质, 2010(6):972-982.
[19] Chen B L . A discussion on origin of Jinwozi ductile shear zone type gold deposit in Beishan area of Gansu and Xinjiang[J]. Mineral Deposits, 2010,29(6):972-982.
[20] 刘建宇, 陈玲, 李伟 , 等. 基于ASTER数据韧性剪切带型金矿蚀变信息提取方法优化[J]. 国土资源遥感, 2019,31(1):229-236.doi: 10.6046/gtzyyg.2019.01.30.
[20] Liu J Y, Chen L, Li W , et al. An improved method for extracting alteration related to the ductile shear zone type gold deposits using ASTER data[J]. Remote Sensing for Land and Resources, 2019,31(1):229-236.doi: 10.6046/gtzyyg.2019.01.30.
[21] 彭玺, 张焜, 彭瑜 . 基于国产卫星的境外遥感地质调查方法[J]. 中国锰业, 2017,35(5):175-180.
[21] Peng X, Zhang K, Peng Y . Geological survey of offshore remote sensing on domestic satellite[J]. China’s Manganese Industry, 2017,35(5):175-180.
[22] 肖晨超, 董丽娜, 陈卫荣 , 等. 基于多因子分析的自主卫星境外地质调查服务能力研究[J]. 国土资源遥感, 2017,29(s1):8-12.doi: 10.6046/gtzyyg.2017.s1.02.
[22] Xiao C C, Dong L N, Chen W R , et al. The capability of domestic satellites’ overseas geological service based on multiple factor analysis[J]. Remote Sensing for Land and Resources, 2017,29(s1):8-12.doi: 10.6046/gtzyyg.2017.s1.02.
[1] LIU Mingxing, LIU Jianhong, MA Minfei, JIANG Ya, ZENG Jingchao. Monitoring of Zanthoxylum bungeanum Maxim planting using GF-2 PMS images and the random forest algorithm: A case study of Linxia, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 218-229.
[2] HU Guoqing, CHEN Donghua, LIU Congfang, XIE Yimei, LIU Saisai, LI Hu. Dynamic monitoring of urban black-odor water bodies based on GF-2 image[J]. Remote Sensing for Land & Resources, 2021, 33(1): 30-37.
[3] Wenya LIU, Anzhi YUE, Jue JI, Weihua SHI, Ruru DENG, Yeheng LIANG, Longhai XIONG. Urban green space extraction from GF-2 remote sensing image based on DeepLabv3+ semantic segmentation model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 120-129.
[4] Jisheng XIA, Mengying MA, Zhongren FU. Extraction of mechanical damage surface using GF-2 remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 26-32.
[5] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[6] Feng FU, Xinjie WANG, Jin WANG, Na WANG, Jihong TONG. Tree species and age groups classification based on GF-2 image[J]. Remote Sensing for Land & Resources, 2019, 31(2): 118-124.
[7] Jing LI, Qiangqiang SUN, Ping ZHANG, Danfeng SUN, Li WEN, Xianwen LI. A study of auxiliary monitoring in iron and steel plant based on multi-temporal thermal infrared remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(1): 220-228.
[8] Chuanping XUE, Zhihai GAO, Bin SUN, Changlong LI, Yan WANG, Yuanyuan ZHANG. Research on high resolution remote sensing recognition method of elm sparse forest in Otindag sandy land[J]. Remote Sensing for Land & Resources, 2018, 30(4): 74-81.
[9] Lijuan WANG, Xiao JIN, Hujun JIA, Yao TANG, Guochao MA. Change detection for mine environment based on domestic high resolution satellite images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 151-158.
[10] CUI Jian, SHI Penghui, BAI Weiming, LIU Xiaojing. Destriping model of GF-2 image based on moment matching[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 34-38.
[11] Ma Xiuqiang, Peng Ling, Xu Suning, Ding Zhilei. Application of GF-2 satellite data to mine geological environment investigation in Daye, Hubei Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 127-131.
[12] JINAG Wei, HE Guojin, LONG Tengfei, YIN Ranyu, SONG Xiaolu, YUAN Yiqin, LING Saiguang. Ortho accuracy validation and analysis of GF-2 PAN imagery based on Beidou satellite navigation system and GPS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 211-216.
[13] HUA Yongchun, LI Zengyuan, GAO Zhihai, GUO Zhong. Extraction of Nitaria tangutorum dune in Minqin County based on GF-2 data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 71-77.
[14] WANG Zhizhong, ZHANG Qingjun. On-orbit MTF estimation and restoration of GF-2 satellite image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 93-99.
[15] SUN Pan, DONG Yusen, CHEN Weitao, MA Jiao, ZOU Yi, WANG Jinpeng, CHEN Hua. Research on fusion of GF-2 imagery and quality evaluation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 108-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech