Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (3) : 234-241     DOI: 10.6046/gtzyyg.2019.03.29
|
Estimation of fractional cover of non-photosynthetic vegetation in typical steppe based on MODIS data
Guoqi CHAI, Jingpu WANG(), Guangzhen WANG, Liu HAN, Zhoulong WANG
College of Resource and Environment Engineering, Ludong University, Yantai 264025, China
Download: PDF(2455 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Non-photosynthetic vegetation (NPV) is an important component of grassland ecosystem, which affects the flow and cycle of carbon, water and energy in the ecosystem. It is of great significance to quantitatively grasp the fractional cover of non-photosynthetic vegetation (fNPV) information for the scientific and effective utilization of grassland resources and the protection of the ecological environment. Taking the typical steppe of Xilingol in Inner Mongolia as the research area and using the regression analysis method, the authors used a variety of non-photosynthetic vegetation indices (NPVIs) based on MODIS (MCD43A4) data and field measured fNPV data to invert the fNPV model and evaluated the estimation effect of the model. The results show that the NPVIs based on MODIS data have a good correlation with fNPV. The correlations are as follows: DFI, SWIR32, NDTI, STI, NDI7, NDI5 and NDSVI. The DFI index inversion fNPV model has higher estimation accuracy. It can be applied to the rapid monitoring of large scale fNPV in typical steppe.

Keywords MCD43A4      non-photosynthetic vegetation      non-photosynthetic vegetation indices      typical steppe     
:  TP79  
Corresponding Authors: Jingpu WANG     E-mail: wangjp@ldu.edu.cn
Issue Date: 30 August 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guoqi CHAI
Jingpu WANG
Guangzhen WANG
Liu HAN
Zhoulong WANG
Cite this article:   
Guoqi CHAI,Jingpu WANG,Guangzhen WANG, et al. Estimation of fractional cover of non-photosynthetic vegetation in typical steppe based on MODIS data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 234-241.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.03.29     OR     https://www.gtzyyg.com/EN/Y2019/V31/I3/234
Fig.1  Study area and sampling location
NPVIs指数 R P
DFI 0.77 P<0.01
SWIR32 -0.72 P<0.01
NDTI 0.71 P<0.01
STI 0.69 P<0.01
NDI7 0.64 P<0.01
NDI5 0.43 P<0.05
NDSVI 0.37 P<0.05
Tab.1  Correlation between NPVIs and fNPV
NPVIs指数 回归方程 R2 P
DFI y=0.048 7x-0.188 3 0.57 P<0.01
SWIR32 y=-1.824 4x+1.841 3 0.50 P<0.01
NDTI y=2.808 8x+0.067 3 0.48 P<0.01
STI y=1.025 2x-0.904 8 0.46 P<0.01
NDI7 y=1.473x+0.445 8 0.42 P<0.01
Tab.2  Inversion models of non-photosynthetic vegetation index and fNPV
NPVIs指数 R2 RMSE RE/%
DFI 0.63 0.098 7 26.73
SWIR32 0.54 0.110 2 29.83
NDTI 0.53 0.112 5 30.46
STI 0.50 0.115 6 31.29
NDI7 0.40 0.128 1 34.69
Tab.3  Accuracy evaluation results of different models
Fig.2  Scatter plots of different fNPV estimated models between predicted value and measured value
Fig.3  Comparison between OLI-fNPV and MODIS-fNPV
Fig.4  Distribution of fNPV in study area
fNPV 像元数/个 百分比/%
[0,0.2] 44 077 10.12
(0.2,0.4] 132 310 30.38
(0.4,0.6] 194 329 44.61
(0.6,0.8] 62 847 14.43
(0.8,1] 2 011 0.46
Tab.4  Area percent of each fNPV grade on Sep.30,2017
[1] 任鸿瑞, 周广胜, 张峰 , 等. 基于纤维素吸收指数(CAI)的内蒙古荒漠草原非绿色生物量估算[J]. 科学通报, 2012,57(10):839-845.
doi: 10.1007/s11434-012-5016-3
[1] Ren H R, Zhou G S, Zhang F , et al. Evaluating cellulose absorption index (CAI) for non-photosynthetic biomass estimation in the desert steppe of Inner Mongolia[J]. China Science Bulletin, 2012,57(10):839-845.
[2] Guerschman J P, Hill M J, Renzullo L J , et al. Estimating fractional cover of photosynthetic vegetation,non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors[J]. Remote Sensing of Environment, 2009,113(5):928-945.
[3] Daughtry C S T, Hunt E R, Doraiswamy P C , et al. Remote sensing the spatial distribution of crop residues[J]. Agronomy Journal, 2005,97(3):864-874.
[4] Daughtry C S T, Doraiswamy P C, Hunt E R , et al. Remote sensing of crop residue cover and soil tillage intensity[J]. Soil and Tillage Research, 2006,91(1-2):101-108.
[5] Daughtry C S T, Hunt E R, McMurtrey J E . Assessing crop residue cover using shortwave infrared reflectance[J]. Remote Sensing of Environment, 2004,90(1):126-134.
[6] Daughtry C S T . Discriminating crop residues from soil by shortwave infrared reflectance[J]. Agronomy Journal, 2001,93(1):125-131.
[7] Henry H A L, Brizgys K, Field C B . Litter decomposition in a California annual grassland:Interactions between photodegradation and litter layer thickness[J]. Ecosystems, 2008,11(4):545-554.
[8] Nagler P L, Inoue Y, Glenn E P , et al. Cellulose absorption index (CAI) to quantify mixed soil-plant litter scenes[J]. Remote Sensing of Environment, 2003,87(2-3):310-325.
[9] Elmore A J, Asner G P, Hughes R F . Satellite monitoring of vegetation phenology and fire fuel conditions in Hawaiian drylands[J]. Earth Interactions, 2005,9(21):1-21.
[10] Mcnairn H, Protz R . Mapping corn residue cover on agricultural fields in Oxford County,Ontario,using thematic mapper[J]. Canadian Journal of Remote Sensing, 1993,19(2):152-159.
[11] Cao X, Chen J, Matsushita B , et al. Developing a MODIS-based index to discriminate dead fuel from photosynthetic vegetation and soil background in the Asian steppe area[J]. International Journal of Remote Sensing, 2010,31(6):1589-1604.
[12] 李涛, 李晓松, 李飞 . 基于Hyperion的锡林郭勒草原光合植被、非光合植被覆盖度估算[J]. 生态学报, 2015,35(11):3643-3652.
doi: 10.5846/stxb201308142075
[12] Li T, Li X S, Li F . Estimating fractional cover of photosynthetic vegetation and non-photosynthetic vegetation in the Xilingol steppe region with EO-1 Hyperion data[J]. Acta Ecologica Sinica, 2015,35(11):3643-3652.
[13] 姬翠翠, 贾永红, 李晓松 , 等. 线性/非线性光谱混合模型估算白刺灌丛植被覆盖度[J]. 遥感学报, 2016,20(6):1402-1412.
[13] Ji C C, Jia Y H, Li X S , et al. Research on linear and nonlinear spectral mixture models for estimating vegetation fractional cover of nitraria bushes[J]. Journal of Remote Sensing, 2016,20(6):1402-1412.
[14] 李志婷, 王昌昆, 潘贤章 , 等. 基于模拟Landsat-8 OLI数据的小麦秸秆覆盖度估算[J]. 农业工程学报, 2016,32(s1):145-152.
[14] Li Z T, Wang C K, Pan X Z , et al. Estimation of wheat residue cover using simulated Landsat-8 OLI datas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(s1):145-152.
[15] 王光镇, 王静璞, 邹学勇 , 等. 基于像元三分模型的锡林郭勒草原光合植被和非光合植被覆盖度估算[J]. 生态学报, 2017,37(17):5722-5731.
doi: 10.5846/stxb201606101111
[15] Wang G Z, Wang J P, Zou X Y , et al. Estimation of fractional cover of photosynthetic and non-photosynthetic vegetation in the Xilingol steppe region using the NDVI-DFI model[J]. Acta Ecologica Sinica, 2017,37(17):5722-5731.
[16] Li X, Zheng G, Wang J , et al. Comparison of methods for estimating fractional cover of photosynthetic and non-photosynthetic vegetation in the Otindag Sandy Land using GF-1 wide-field view data[J]. Remote Sensing, 2016,8(10):800.
[17] 王光镇, 王静璞, 邹学勇 , 等. 遥感技术估算非光合植被覆盖度研究综述[J]. 遥感技术与应用, 2018,33(1):1-9.
[17] Wang G Z, Wang J P, Zou X Y , et al. A review on estimating fractional cover of non-photosynthetic vegetation by using remote sensing[J]. Remote Sensing Technology and Application, 2018,33(1):1-9.
[18] 张淼, 李强子, 蒙继华 , 等. 作物残茬覆盖度遥感监测研究进展[J]. 光谱学与光谱分析, 2011,31(12):3200-3205.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ111222000108LhOkRn
[18] Zhang M, Li Q Z, Meng J H , et al. Review of crop residue fractional cover monitoring with remote sensing[J]. Spectroscopy and Spectral Analysis, 2011,31(12):3200-3205.
[19] Jacques D C, Kergoat L, Hiernaux P , et al. Monitoring dry vegetation masses in semi-arid areas with MODIS SWIR bands[J]. Remote Sensing of Environment, 2014,153:40-49.
[20] van Deventer A P, Ward A D, Gowda P H , et al. Using thematic mapper data to identify contrasting soil plains and tillage practices[J]. Photogrammetric Engineering and Remote Sensing, 1997,63(1):87-93.
[21] Qi J, Marsett R, Heilman P , et al. RANGES improves satellite-based information and land cover assessments in southwest United States[J]. EOS Transactions American Geophysical Union, 2002,83(51):601-606.
[22] 刘春静, 张丽, 周宇 , 等. 中国新疆及中亚五国干旱区草地覆盖度反演与分析[J]. 草业科学, 2016,33(5):861-870.
doi: 10.11829/j.issn.1001-0629.2015-0503
[22] Liu C J, Zhang L, Zhou Y , et al. Retrieval and analysis of grassland coverage in arid Xinjiang,China and five countries of Central Asia[J]. Pratacultural Science, 2016,33(5):861-870.
[23] 吴林, 张元明 . 以数码照相法估算生物土壤结皮盖度[J]. 中国沙漠, 2013,33(6):1810-1815.
doi: 10.7522/j.issn.1000-694X.2013.00269
[23] Wu L, Zhang Y M . Coverage estimation on biological soil crusts based on digital photos[J]. Journal of Desert Research, 2013,33(6):1810-1815.
[24] 张浩彬, 李俊生, 向南平 , 等. 基于MODIS地表反射率数据的水体自动提取研究[J]. 遥感技术与应用, 2015,30(6):1160-1167.
doi: 10.11873/j.issn.1004-0323.2015.6.1160
[24] Zhang H B, Li J S, Xiang N P , et al. A study of extracting water bodies automatically based on the MODIS surface reflectance data[J]. Remote Sensing Technology and Application, 2015,30(6):1160-1167.
[25] Serbin G , Daughtry C S T,Hunt E R ,et al. Effects of soil composition and mineralogy on remote sensing of crop residue cover[J]. Remote Sensing of Environment, 2009,113(1):224-238.
[26] 唐世浩, 朱启疆, 孙睿 . 基于方向反射率的大尺度叶面积指数反演算法及其验证[J]. 自然科学进展, 2006,16(3):331-337.
[26] Tang S H, Zhu Q J, Sun R . The inversion algorithm and its validation of coarse scale leaf area index based on the direction of the reflectivity[J]. Progress in Natural Science, 2006,16(3):331-337.
[27] 孙晨曦, 刘良云, 关琳琳 , 等. 锡林浩特草原区域MODIS LAI产品真实性检验与误差分析[J]. 遥感学报, 2014,18(3):518-536.
doi: 10.11834/jrs.20143097
[27] Sun C X, Liu L Y, Guan L L , et al. Validation and error analysis of the MODIS LAI product in Xilinhot grassland[J]. Journal of Remote Sensing, 2014,18(3):518-536.
[28] 于惠, 吴玉锋, 金毅 , 等. 基于MODIS SWIR数据的干旱区草地地上生物量反演及时空变化研究[J]. 遥感技术与应用, 2017,32(3):524-530.
[28] Yu H, Wu Y F, Jin Y , et al. An approach for monitoring the aboveground biomass of grassland in arid areas based on MODIS SWIR bands[J]. Remote Sensing Technology and Application, 2017,32(3):524-530.
[29] Gelder B K, Kaleita A L, Cruse R M . Estimating mean field residue cover on midwestern soils using satellite imagery[J]. Agronomy Journal, 2009,101(3):635-643.
[30] Cao X, Cui X, Yue M , et al. Evaluation of wildfire propagation susceptibility in grasslands using burned areas and multivariate logistic regression[J]. International Journal of Remote Sensing, 2013,34(19):6679-6700.
[31] Ren H, Zhou G . Estimating senesced biomass of desert steppe in Inner Mongolia using field spectrometric data[J]. Agricultural and Forest Meteorology, 2012,161(4):66-71.
[32] 谢小燕, 刘咏梅, 李京忠 , 等. 黄土丘陵区林草地枯落层盖度遥感估算研究[J]. 光谱学与光谱分析, 2016,36(7):2217-2223.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ161223000226QmTpVs
[32] Xie X Y, Liu Y M, Li J Z , et al. Remote sensing estimation of plant litter cover based on the spectra of plant litter-soil mixed scenes[J]. Spectroscopy and Spectral Analysis, 2016,36(7):2217-2223.
[1] LIANG Shouzhen, SUI Xueyan, YAO Huimin, WANG Meng, HOU Xuehui, CHEN Jinsong, MA Wandong. An analysis of influence of non-photosynthetic vegetation of deciduous broad-leaved forest on canopy FPAR: A method based on layered simulation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 29-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech