Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (1) : 7-12     DOI: 10.6046/gtzyyg.2020.01.02
|
Discussion on quality inspection and solution of DEM generated by airborne LiDAR technology
Lei MENG, Chao LIN
Land Resource and Information Center of Guangdong Province, Guangzhou 510075, China
Download: PDF(4723 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

At present, the technology of generating high precision and high current digital elevation model (DEM) based on airborne light detection and ranging (LiDAR) data has been widely used. It is urgent to control the quality of DEM data scientifically and efficiently. In this paper, the authors introduce the three-step inspection method based on practical production experience, which includes human-machine interpretation discriminant inspection, semi-automatic inspection and automatic inspection through python. This method comprehensively covers the quality inspection of DEM generated by airborne LiDAR technology and provides the solution, thus improving the efficiency and accuracy of quality inspection and filling the blank of nonexistence of ready-made software and methods for completing the work.

Keywords airborne LiDAR      digital elevation model      point cloud classification      quality inspection     
:  TP79  
Issue Date: 14 March 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lei MENG
Chao LIN
Cite this article:   
Lei MENG,Chao LIN. Discussion on quality inspection and solution of DEM generated by airborne LiDAR technology[J]. Remote Sensing for Land & Resources, 2020, 32(1): 7-12.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.01.02     OR     https://www.gtzyyg.com/EN/Y2020/V32/I1/7
质量元素 检查项
空间参考系 ①坐标系统; ②高程基准; ③投影参数
位置精度 ①高程中误差; ②同名格网高程值; ③点云高程异常处理
逻辑一致性 ①数据归档; ②数据格式; ③数据文件; ④文件命名
栅格质量 ①格网尺寸; ②格网范围
附件质量 ①元数据; ②附属文档
Tab.1  Quality element check items of DEM
Fig.1  Rendering effect of DEM and superimposed contours
Fig.2  Contours generated by DEM superimposed DOM
Fig.3  Noise points in point clouds affects the continuity of ground expression
Fig.4  Continuous and smooth surface model of point cloud
Fig.5  Incorrect classification causes ridge flattening
Fig.6  Inconsistent water surface elevation caused by not adding feature lines
Fig.7  Automatic detection of abnormal points in DEM
Fig.8  Homonym pixel values of two adjacent DEM
图幅号 坐标系名称 投影椭球名称 格网范围/m 精度类型 格网尺寸/m
2400-37470 CGCS_2000_3Degree_GK_Zone37 DATUM['D_CGCS_2000' 37 469 979,2 399 979,37 475 021,2 405 021 F32 2
2400-37475 CGCS_2000_3Degree_GK_Zone37 DATUM['D_CGCS_2000' 37 474 979,2 399 979,37 480 021,2 405 021 F32 2
2405-37470 CGCS_2000_3Degree_GK_Zone37 DATUM['D_CGCS_2000' 37 469 979,2 404 979,37 475 021,2 410 021 F32 2
2405-37475 CGCS_2000_3Degree_GK_Zone37 DATUM['D_CGCS_2000' 37 474 979,2 404 979,37 480 021,2 410 021 F32 2
………… ………… ………… …… …… ……
Tab.2  Read and check related information in batch
Fig.9  Automatic extraction of DEM metadata information by scripting tools
[1] 亢玉龙 . LiDAR测绘技术在工程测绘中的应用分析[J]. 城市地理, 2017(18):96.
[1] Kang Y L . Application and analysis of LiDAR surveying and mapping technology in engineering surveying and mapping[J]. Cultural Geography, 2017(18):96
[2] 王志明, 李锁乐 . 机载LiDAR技术支持下的荒漠地区1∶10 000地形图测绘与研究——以内蒙古阿拉善地区为例[J]. 测绘通报, 2019(4):91-95.
[2] Wang Z M, Li S L . Mapping and research of 1∶10 000 topographic map in desert area based on airborne LiDAR technology:An example for Alxa,Inner Mongolia[J]. Bulletin of Surveying and Mapping, 2019(4):91-95.
[3] 蒋桂美, 聂倩, 陈小松 . 利用机载激光点云数据生产DEM的关键技术分析[J]. 测绘通报, 2017(6):90-93.
[3] Jiang G M, Nie Q, Chen X S . Key technologies analysis of DEM production based on LiDAR data[J]. Bulletin of Surveying and Mapping, 2017(6):90-93.
[4] 国家测绘地理信息局. CH/T 1026—2012数字高程模型质量检验技术规程[S]. 北京: 测绘出版社, 2012.
[4] National Bureau of Surveying and Mapping Geographic Information. CH/T 1026—2012 technical rules for quality inspection and acceptance of digital elevation model[S]. Beijing: Surveying and Mapping Publishing House, 2012.
[5] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 18316—2008数字测绘成果质量检查与验收[S]. 北京: 中国标准出版社, 2008.
[5] General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration. GB/T 18316—2008 specifications for inspection and acceptance of quality of digital surveying and mapping achievements[S]. Beijing: Standards Press of China, 2008.
[6] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 24356—2009测绘成果质量检查与验收[S]. 北京: 中国标准出版社, 2009.
[6] General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China, Standardization Administration. GB/T 24356—2009 specifications for quality inspection and acceptance of surveying and mapping products[S]. Beijing: Standards Press of China, 2009.
[7] 国家测绘地理信息局. CH/T 8023—2011机载激光雷达数据处理技术规范[S]. 北京: 测绘出版社, 2011: 3-10.
[7] National Bureau of Surveying and Mapping Geographic Information. CH/T 8023—2011 specification for data processing of airborne LIDAR[S]. Beijing: Surveying and Mapping Publishing House, 2011: 3-10.
[8] 雷蓉, 邱振戈, 张士涛 . 基于遥感影像生成DEM的质量检查[J]. 测绘通报, 2005(4):36-39.
[8] Lei R, Qiu Z G, Zhang S T . Quality check of DEM derived from remote sensing images[J]. Bulletin of Surveying and Mapping, 2005(4):36-39.
[9] 贾秋英 . 高精度DEM的制作方法与质量控制[J]. 江西科学, 2017,35(5):731-734,759.
[9] Jia Q Y . High-accuracy DEM making methods and quality control research[J]. Jiangxi Science, 2017,35(5):731-734,759.
[10] 王强辉 . 机载LiDAR原始点云数据质量检验方法研究[J]. 测绘地理信息, 2018,43(5):35-37.
[10] Wang Q H . Method on quality assurance of airborne original LiDAR point cloud data[J]. Journal of Geomatics, 2018,43(5):35-37.
[11] 王师, 周晓翠 . 机载激光雷达数据处理质量控制与解决方案探讨[J]. 红水河, 2012,31(3):91-95.
[11] Wang S, Zhou X C . Discussions on quality control of airborne LiDAR data processing and its solutions[J]. Hongshui River, 2012,31(3):91-95.
[12] 黎建平 . 关于LiDAR数据DEM成果精度影响因素的探讨[J]. 测绘与空间地理信息, 2018,41(9):231-233,238.
[12] Li J P . Discussion of influence factors in DEM results precision based on LiDAR data[J]. Geomatics and Spatial Information Technology, 2018,41(9):231-233,238.
[13] 姚慧敏 . 基于地形特征建立高质量DEM[D]. 郑州:中国人民解放军信息工程大学, 2002.
[13] Yao H M . Establishment of High Quality DEM Based on Terrain Characteristics[D]. Zhengzhou:Information Engineering University of the Chinese People’s Liberation Army, 2002.
[1] WU Fang, LI Yu, JIN Dingjian, LI Tianqi, GUO Hua, ZHANG Qijie. Application of 3D information extraction technology of ground obstacles in the flight trajectory planning of UAV airborne geophysical exploration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 286-292.
[2] LI Tianqi, WANG Jianchao, WU Fang, ZHAO Zheng, ZHANG Wenkai. Construction of tidal flat DEM based on multi-algorithm waterline extraction[J]. Remote Sensing for Land & Resources, 2021, 33(1): 38-44.
[3] Qi LI, Jianchao WANG, Yachao HAN, Zihong GAO, Yongjun ZHANG, Dingjian JIN. Potential evaluation of China’s coastal airborne LiDAR bathymetry based on CZMIL Nova[J]. Remote Sensing for Land & Resources, 2020, 32(1): 184-190.
[4] Chong LI, Haolin LI, Yi SHE. Quality inspection of geographic information products based on multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 258-263.
[5] Lei DU, Jie CHEN, Minmin LI, Xiongwei ZHENG, Jing LI, Zihong GAO. The application of airborne LiDAR technology to landslide survey: A case study of Zhangjiawan Village landslides in Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 180-186.
[6] Li YAN, Yao LI, Hong XIE. Automatic reconstruction of LoD3 city building model based on airborne and vehicle-mounted LiDAR data[J]. Remote Sensing for Land & Resources, 2018, 30(4): 97-101.
[7] YU Zhoulu, WANG Wenchao, RONG Yi, SHEN Zhangquan. Sub-pixel mapping of land cover using sub-pixel swapping algorithm and topographic data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 88-97.
[8] LI Jiajun, ZHONG Ruofei. Route design of light airborne LiDAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 97-103.
[9] WANG Xue, LI Peijun, JIANG Shasha, LIU Jing, SONG Benqin. Building extraction using airborne LiDAR data and very high resolution imagery over a complex urban area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 106-111.
[10] DONG Baogen, CHE Sen, XIE Longgen, SHAN Guohui, HE Qiao. Mode filter and its application to post-processing of remote sensing classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 62-66.
[11] TANG Feifei, RUAN Zhimin, ZHANG Yali, PENG Li. Automatic detection of change information for buildings based on airborne LiDAR and GIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 57-62.
[12] CHEN Jie, XIAO Chunlei, LI Jing. Calibration of airborne LiDAR cloud point data with no calibration field[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 27-33.
[13] WU Fang, ZHANG Zonggui, GUO Zhaocheng, AN Zhihong, YU Kun, LI Ting. Method of deriving DEM in the mining area based on filtering of airborne LiDAR data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 62-67.
[14] CHEN Jie, YANG Dachang, DU Lei, LI Jing, HAN Yachao. Method for inspection of frame digital aerial photographic quality[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 91-96.
[15] ZHANG Wei, YAO Qi, YANG Jinzhong, YU Hao, WU Jianyong. Geomorphic characteristics of segmental activities of the Longmenshan fault zone since late Cenozoic[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 113-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech