Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (1) : 19-26     DOI: 10.6046/gtzyyg.2020.01.04
|
Medium resolution remote sensing based winter wheat mapping corrected by low-resolution time series remote sensing images
Shuang ZHU1,2, Jinshui ZHANG2,3,4()
1. Beijing Polytechnic College, Beijing 100042, China
2. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
3. Beijing Engineering Research Center for Global Land Remote Sensing Products, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
4. Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Download: PDF(5774 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Owing to influences of the same spectrum with the different thing and the same thing with the different spectrum, the medium resolution remotely sensed image, Landsat8 OLI, extracts the wheat extraction with the wrong information, which leads to low accuracy. The coarse resolution image with multi-temporal trait can discriminate the wheat information from other similar land cover. In this paper, the multi-temporal trait is adopted to solve the “wrong coming or wrong going” error of the OLI classification so as to increase the wheat extraction accuracy. The experiment shows that the OLI and MODIS can extract the wheat with high consistence, so the result of MODIS can correct the error of the OLI, where the phenomenon of the same spectrum with the different thing and the same thing with the different spectrum occurs. In the region of the same thing with different spectrum, the RMSE of OLI result is 0.758, while that of the MODIS correction result is 0.142. In the region of the different thing with the same spectrum, the RMSE of OLI result is 0.901, while that of the MODIS correction result is 0.122. All the results show that the MODIS result can correct OLI result for higher wheat extraction accuracy, which can solve the phenomenon of the same spectrum with the different thing and the same thing with the different spectrum.

Keywords time series      linear mixed spectral unmixing      fraction      consistency analysis      rectification     
:  TP79  
Corresponding Authors: Jinshui ZHANG     E-mail: zhangjs@bnu.edu.cn
Issue Date: 14 March 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shuang ZHU
Jinshui ZHANG
Cite this article:   
Shuang ZHU,Jinshui ZHANG. Medium resolution remote sensing based winter wheat mapping corrected by low-resolution time series remote sensing images[J]. Remote Sensing for Land & Resources, 2020, 32(1): 19-26.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.01.04     OR     https://www.gtzyyg.com/EN/Y2020/V32/I1/19
Fig.1  Remote sensing image of OLI in the study area
Fig.2  Spectrum of land cover types in OLI image
Fig.3  Technology flowchart
Fig.4  Wheat extraction results of OLI image in the study area
类别 野外测量数据 生产者
精度/%
冬小麦 非小麦
OLI分类数据 冬小麦 237 61 79.53
非冬小麦 43 555 7.19
用户精度/% 84.64 9.90
Tab.1  Accuracy assessment of wheat classification from OLI image
Fig.5  Temporal curves of several typical land types from MODIS data
Fig.6  Scatter diagram from the MODIS endmembers and wheat distribution
Fig.7  Wheat result consistence between MODIS and OLI
Fig.8  MODIS correct OLI wheat result
Fig.9  MODIS correct OLI wheat result
区域 MODIS丰度范围/% MODIS平均丰度/% OLI丰度范围/% OLI平均丰度/% RMSE(OLI) RMSE(MODIS修正)
冬小麦错出 70.2~100 84.9 0~20 8.6 0.758 0.142
冬小麦错入 0~35 16.3 60~90 78.6 0.901 0.122
Tab.2  RMSE of MODIS wheat result in OLI wheat region with error
[1] Lobell D B, Asner G P . Cropland distributions from temporal unmixing of MODIS data[J]. Remote Sensing of Environment, 2004,93(3):412-422.
[2] 王利民, 刘佳, 杨玲波 , 等. 短波红外波段对玉米大豆种植面积识别精度的影响[J]. 农业工程学报, 2016,32(19):169-178.
[2] Wang L M, Liu J, Yang L B , et al. Impact of short infrared wave band on identification accuracy of corn and soybean area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(19):169-178.
[3] 朱爽, 张锦水, 崔有祯 . 剖线强度梯度变化的作物软硬变化区精确划分[J]. 中国农业资源与区划, 2018,39(7):38-42.
[3] Zhu S, Zhang J S, Cui Y Z . Soft and hard change region identification of crop by profile based gradient change magnitude method[J]. Chinese Journal of Agricultural Resources and Regional Planning. 2018,39(7):38-42
[4] Pan Y Z, Hu T G, Zhu X F , et al. Mapping cropland distributions using a hard and soft classification model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(11):4301-4312.
[5] Prakash A, Gupta R P . Land-use mapping and change detection in a coal mining area:A case study in the Jharia coalfield,India[J]. International Journal of Remote Sensing, 1998,19(3):391-410.
[6] Weismiller R A, Kristof S J, Scholz D K , et al. Change detection in coastal zone environments[J]. Photogrammetric Engineering and Remote Sensing, 1977,43(12):1533-1539.
[7] Bruzzone L, Prieto D F . A minimum-cost thresholding technique for unsupervised change detection[J]. International Journal of Remote Sensing, 2000,21(18):3539-3544.
[8] 李苓苓, 潘耀忠, 张锦水 , 等. 支持向量机与分类后验概率空间变化向量分析法相结合的冬小麦种植面积测量方法[J]. 农业工程学报, 2010,26(9):210-217.
[8] Li L L, Pan Y Z, Zhang J S , et al. Method of winter wheat planting area estimation based on support vector machine and post-classification changed vector analysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(9):210-217.
[9] 朱爽, 张锦水 . 地块破碎度对软硬变化检测法识别冬小麦分布精度的影响[J]. 农业工程学报, 2016,32(10):164-171.
[9] Zhu S, Zhang J S . Impact of land fragmentation on identification of winter wheat distribution accuracy by soft and hard change detection method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(10):164-171.
[10] Stefanov W L, Ramsey M S, Christensen P R . Monitoring urban land cover change:An expert system approach to land cover classification of semiarid to arid urban centers[J]. Remote Sensing of Environment, 2001,77(2):173-185.
[11] 赵敏, 赵银娣 . 面向对象的多特征分级CVA遥感影像变化检测[J]. 遥感学报, 2018,22(1):119-131.
[11] Zhao M, Zhao Y D . Object-oriented and multi-feature hierarchical change detection based on CVA for high-resolution remote sensing imagery[J]. Journal of Remote Sensing, 2018,22(1):119-131.
[12] 谢登峰, 张锦水, 潘耀忠 , 等. Landsat8和MODIS融合构建高时空分辨率数据识别秋粮作物[J]. 遥感学报, 2015,19(5):791-805.
[12] Xie D F, Zhang J S, Pan Y Z , et al. Fusion of MODIS and Landsat8 images to generate high spatial-temporal resolution data for mapping autumn crop distribution[J]. Journal of Remote Sensing, 2015,19(5):791-805.
[13] Yu W Y, Qi Y B, Wei F , et al. The impact of FDD rotation mode and irrigation methods on rice irrigation water efficiency in southwestern China[J]. Resources Science, 2017,39(6):1127-1136.
[14] 任建强, 陈仲新, 周清波 , 等. MODIS植被指数的美国玉米单产遥感估测[J]. 遥感学报, 2015,19(4):568-577.
[14] Ren J Q, Chen Z X, Zhou Q B , et al. MODIS vegetation index data used for estimating corn yield in USA[J]. Journal of Remote Sensing, 2015,19(4):568-577.
[15] 顾晓鹤, 潘耀忠, 朱秀芳 , 等. MODIS与TM冬小麦种植面积遥感测量一致性研究——小区域实验研究[J]. 遥感学报, 2007,11(3):350-358.
[15] Gu X H, Pan Y Z, Zhu X F , et al. Consistency study between MODIS and OLI on winter wheat plant area monitoring:A case in small area[J]. Journal of Remote Sensing, 2007,11(3):350-358.
[16] 朱爽, 张锦水, 帅冠元 , 等. 通过软硬变化检测识别冬小麦[J]. 遥感学报, 2014,18(2):476-496.
[16] Zhu S, Zhang J S, Shuai G Y , et al. Winter wheat mapping by soft and hard land use/cover change detection[J]. Journal of Remote Sensing, 2014,18(2):476-496
[17] Mountrakis G, Im J, Ogole C . Support vector machines in remote sensing:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011,66(3):247-259.
[18] Zhang L F, Jiao W Z, Zhang H M , et al. Studying drought phenomena in the continental United States in 2011 and 2012 using various drought indices[J]. Remote Sensing of Environment, 2017,190:96-106.
[19] Amani M, Salehi B, Mahdavi S , et al. Temperature-vegetation-soil moisture dryness index (TVMDI)[J]. Remote Sensing of Environment, 2017,197:1-14.
[20] Wang L J, Guo N, Wang X P , et al. Effects of spatial resolution for evapotranspiration estimation by using the triangular method over heterogeneous underling surface[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(6):2518-2527.
[21] Ghaffari O, Zoej M J V, Mokhtarzade M . Reducing the effect of the endmembers’ spectral variability by selecting the optimal spectral bands[J]. Remote Sensing, 2017,9(9):99-112.
[22] Bangira T, Alfieri S M, Menenti M , et al. A spectral unmixing method with ensemble estimation of endmembers:Application to flood mapping in the Caprivi floodplain[J]. Remote Sensing, 2017,9(10):472-484.
[23] Ma T, Li R, Svenning J , et al. Linear spectral unmixing using endmember coexistence rules and spatial correlation[J]. International Journal of Remote Sensing, 2018,39(11):3512-3536.
[24] 陈晋, 马磊, 陈学泓 , 等. 混合像元分解技术及其进展[J]. 遥感学报, 2016,20(5):1102-1109.
[24] Chen J, Ma L, Chen X H , et al. Research progress of spectral mixture analysis[J]. Journal of Remote Sensing, 2016,20(5):1102-1109.
[25] 蓝金辉, 邹金霖, 郝彦爽 , 等. 高光谱遥感影像混合像元分解研究进展[J]. 遥感学报, 2018,22(1):13-27.
[25] Lan J H, Zou J L, Hao Y S , et al. Research progress on unmixing of hyperspectral remote sensing imagery[J]. Journal of Remote Sensing, 2018,22(1):13-27.
[26] 张春森, 郑艺惟, 黄小兵 , 等. 高光谱影像光谱-空间多特征加权概率融合分类[J]. 测绘学报, 2015(8):909-918.
[26] Zhang C L, Zheng Y W, Huang X B , et al. Hyperspectral image classification based on weighted probabilistic fusion of multiple spectral-spatial features[J]. Acta Geodaetica et Cartographica Sinica, 2015,44(8):909-918.
[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] SHI Feifei, GAO Xiaohong, XIAO Jianshe, LI Hongda, LI Runxiang, ZHANG Hao. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1): 115-126.
[3] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[4] LAI Peiyu, HUANG Jing, HAN Xujun, MA Mingguo. An analysis of impacts from water impoundment in Three Gorges Dam Project on surface water in Chongqing area base on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2021, 33(4): 227-234.
[5] YU Bing, TAN Qingxue, LIU Guoxiang, LIU Fuzhen, ZHOU Zhiwei, HE Zhiyong. Land subsidence monitoring based on differential interferometry using time series of high-resolution TerraSAR-X images and monitoring precision verification[J]. Remote Sensing for Natural Resources, 2021, 33(4): 26-33.
[6] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[7] CHEN Hong, GUO Zhaocheng, HE Peng. Spatial and temporal change characteristics of vegetation coverage in Erhai Lake basin during 1988—2018[J]. Remote Sensing for Land & Resources, 2021, 33(2): 116-123.
[8] WANG Dejun, JIANG Qigang, LI Yuanhua, GUAN Haitao, ZHAO Pengfei, XI Jing. Land use classification of farming areas based on time series Sentinel-2A/B data and random forest algorithm[J]. Remote Sensing for Land & Resources, 2020, 32(4): 236-243.
[9] SUN Chao, CHEN Zhenjie, WANG Beibei. Expansion monitoring of construction land based on SAR time series: A case study of Xinbei District, Changzhou[J]. Remote Sensing for Land & Resources, 2020, 32(4): 154-162.
[10] WANG Lingyu, CHEN Quan, WU Yue, ZHOU Zhongfa, DAN Yusheng. Accurate recognition and extraction of karst abandoned land features based on cultivated land parcels and time series NDVI[J]. Remote Sensing for Land & Resources, 2020, 32(3): 23-31.
[11] Biqing WANG, Wenquan HAN, Chi XU. Winter wheat planting area identification and extraction based on image segmentation and NDVI time series curve classification model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 219-225.
[12] Yuting YANG, Hailan CHEN, Jiaqi ZUO. Remote sensing monitoring of impervious surface percentage in Hangzhou during 1990—2017[J]. Remote Sensing for Land & Resources, 2020, 32(2): 241-250.
[13] Guoce SONG, Zhi ZHANG. Remote sensing monitoring method for dust and wind accumulation in multi-metal mining area of Xin Barag Right Banner,Inner Mongolia[J]. Remote Sensing for Land & Resources, 2020, 32(2): 46-53.
[14] Haihui HAN, Guangli REN, Yilin WANG, Min YANG, Anqiang YAO, Zhuan ZHANG. Application of collaborative processing method to the analysis of remote sensing alteration abnormal causes: A case study of Fangshankou area in Beishan[J]. Remote Sensing for Land & Resources, 2020, 32(1): 138-147.
[15] Jiaqi ZUO, Zegen WANG, Jinhu BIAN, Ainong LI, Guangbin LEI, Zhengjian ZHANG. A review of research on remote sensing for ground impervious surface percentage retrieval[J]. Remote Sensing for Land & Resources, 2019, 31(3): 20-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech