Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (1) : 51-59     DOI: 10.6046/gtzyyg.2020.01.08
|
An automatic method for extracting skeleton lines from arbitrary polygons based on GIS spatial analysis
Renbo SONG1,2, Yuxin ZHU1, Shangshan DING1, Qiaoning HE1, Xiyuan WANG1, Yuexiang WANG1
1. School of Urban and Environmental Science, Huaiyin Normal University, Huai’an 223300, China
2. Binjiang College, Nanjing University of Information Science and Technology, Wuxi 214105, China
Download: PDF(4939 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In view of the shortcomings such as complex algorithm design, code implementation, high cost and long period in the existent methods for extracting skeleton line from arbitrary polygons, the authors put forward an automatic method for extracting skeleton lines from arbitrary polygons based on geographic information system (GIS) space analysis. First, the electronic maps are taken as the data sources, and the polygon vector boundaries of the spatial objects are extracted and preprocessed by using the model tool of ENVI classification in the ArcToolbox toolbox with the platform support of the ENVI and the ArcGIS. Secondly, variable tools such as data processing, spatial analysis and file conversion are combined for extracting the nodes of skeleton lines and post-processing them. Then, the object oriented programming language of Python is used and combined with the ArcPy package for programming the scripts to extract the skeleton lines automatically. Furthermore, the visual modeling tool of ModelBuilder is used to build the model for extracting the skeleton lines automatically. Finally, the method is applied to the extraction of the skeleton line of the road and the building polygons boundary respectively. The experimental process and its results show that the method has characteristics of effectiveness, practicality and operability.

Keywords arbitrary polygon      skeleton lines      GIS      spatial analysis     
:  TP751.1  
Issue Date: 14 March 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Renbo SONG
Yuxin ZHU
Shangshan DING
Qiaoning HE
Xiyuan WANG
Yuexiang WANG
Cite this article:   
Renbo SONG,Yuxin ZHU,Shangshan DING, et al. An automatic method for extracting skeleton lines from arbitrary polygons based on GIS spatial analysis[J]. Remote Sensing for Land & Resources, 2020, 32(1): 51-59.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.01.08     OR     https://www.gtzyyg.com/EN/Y2020/V32/I1/51
Fig.1  Schematic diagram of the extraction of skeleton lines from arbitrary polygons
Fig.2  Technical processes of extracting skeleton lines from arbitrary polygons
Fig.3  Acquisition and preprocessing of the experimental data
Fig.4  Processes of creating constrained Delaunay triangulation of arbitrary polygons and its model
Fig.5  Processes of generating the skeleton lines of arbitrary polygon and its model
Fig.6  Model for post processing the skeleton line nodes
OID* Shape* ID T1 J1
1 Polygon Z 1 1 25
2 Polygon Z 1 1 41
3 Polygon Z 2 2 39
4 Polygon Z 2 2 41
5 Polygon Z 3 3 35
6 Polygon Z 3 3 37
Tab.1  Attribute table of spatial join triangular feature class
Fig.7  Three types of triangles for connecting the skeleton lines
OID* Shape * ID
1 Polygon Z 1
2 Polygon Z 2
3 Polygon Z 3
4 Polygon Z 4
5 Polygon Z 5
6 Polygon Z 6
Tab.2  Attribute table of constraint Delaunay triangular feature class
OID* Shape * ID
25 Point Z 25
41 Point Z 41
39 Point Z 39
41 Point Z 41
35 Point Z 35
37 Point Z 37
Tab.3  Attribute table of skeleton node feature class
Fig.8  Procedure flow of connecting the skeleton lines
Fig.9  User interface of the script tool for extracting the skeleton lines and the extracted results
Fig.10  Model constructed for extracting skeleton lines
Fig.11  Application test and the extracted results of skeleton lines
多边形对象 约束Delaunay
三角面数量/个
骨架线提取模
型运行时间/s
道路 475 60
建筑物 735 80
Tab.4  Experimental extraction of skeleton lines by grouping statistics
Fig.12  Comparing analysis for the experimental results of the skeleton lines extraction
[1] 王涛, 毋河海 . 顾及多因素的面状目标多层次骨架线提取[J]. 武汉大学学报(信息科学版), 2004,29(6):533-536.
[1] Wang T, Wu H H . Extraction of hierarchical skeleton of areal object based on multivariate analysis[J]. Geomatics and Information Science of Wuhan University, 2004,29(6):533-536.
[2] 毋河海 . 地图综合理论基础与技术方法研究[M]. 北京: 测绘出版社, 2004.
[2] Wu H H. Research on Map Generalization Theoretical Basis and Technical Method[M]. Beijing: Surveying and Mapping Press, 2004.
[3] 刘晶 . GIS制图中骨架提取算法的设计与实现[J]. 中南民族大学学报(自然科学版), 2007,26(4):78-80.
[3] Liu J . Design and implementation of skeletonization in GIS cartography[J]. Journal of South-Central University for Nationalities (Natural Science Edition), 2007,26(4):78-80.
[4] 杜瑞颖, 刘镜年 . 面状地物名称注记的自动配置研究[J]. 测绘学报, 1999,28(4):365-368.
[4] Du R Y, Liu J N . A research on automatic placement of geo-name in area feature[J]. Acta Geodaetica et Cartographica Sinica, 1999,28(4):365-368.
[5] 杨乃, 郭庆胜, 杨族桥 . 3维面状要素注记的自动配置研究[J]. 测绘科学技术学报, 2009,26(6):449-453.
[5] Yang N, Guo Q S, Yang Z Q . Research on automatic placement of label in 3D area feature[J]. Journal of Geomatics Science and Technology, 2009,26(6):449-453.
[6] Han C Y, Kwon S H, Choi H I . Media axis transform of a planar domain with infinite curvature boundary points[J]. Computer Aided Geometric Design, 2012,29(6):281-295.
[7] Smogavec G, Žalik B . A fast algorithm for constructing approximate medial axis of polygons,using Steiner points[J]. Advances in Engineering Software, 2012,52:1-9.
[8] 刘小凤, 吴艳兰, 胡海 . 面状要素的多层次骨架线提取[J]. 测绘学报, 2013,42(4):588-594.
[8] Liu X F, Wu Y L, Hu H . A method of extracting multiscale skeleton for polygonal shapes[J]. Acta Geodaetica et Cartographic Sinica, 2013,42(4):588-594.
[9] 王飞, 李成名 . 利用多边形骨架线生成房屋模型算法研究[J]. 测绘通报, 2017(1):69-73.
[9] Wang F, Li C M . Research on algorithms for solving roof model by using straight skeleton of polygon[J]. Bulletin of Surveying and Mapping, 2017(1):69-73.
[10] 胡鹏, 王海军, 邵春丽 , 等. 论多边形中轴问题和算法[J]. 武汉大学学报(信息科学版), 2005,30(10):853-857.
[10] Hu P, Wang H J, Shao C L , et al. Polygon medial axis problem and the algorithm[J]. Geomatics and Information Science of Wuhan University, 2005,30(10):853-857.
[11] 常小刚, 李玉龙 . 简单凸多边形中轴算法改进及实现[J]. 重庆工学院学报(自然科学版), 2009,23(9):176-180.
[11] Chang X G, Li Y L . Improvement and realization of simple convex polygon medial axis algorithm[J]. Journal of Chongqing Institute of Technology(Natural Science), 2009,23(9):176-180.
[12] 刘秀芳, 杨永平, 罗吉 , 等. 基于内侧缓冲区算法的多边形骨架线提取模型[J]. 海洋测绘, 2010,30(5):46-48.
[12] Liu X F, Yang Y P, Luo J , et al. Research on extracting polygon skeleton by using inner buffering algorithm[J]. Hydrographic Surveying and Charting, 2010,30(5):46-48.
[13] 陈涛, 艾廷华 . 多边形骨架线与形心自动搜寻算法研究[J]. 武汉大学学报(信息科学版), 2004,29(5):443-446,455.
[13] Chen T, Ai T H . Automatic extraction of skeleton and center of area feature[J]. Geomatics and Information Science of Wuhan University, 2004,29(5):443-446,455.
[14] 王中辉, 闫浩文 . 多边形主骨架线提取算法的设计与实现[J]. 地理与地理信息科学, 2011,27(1):42-44,48.
[14] Wang Z H, Yan H W . Design and implementation of an algorithm for extracting the main skeleton lines of polygons[J]. Geography and Geo-Information Science, 2011,27(1):42-44,48.
[15] 林福严, 郑奇志, 胡于进 , 等. 平面形体的中线提取及其应用[J]. 计算机应用与软件, 2000,17(6):61-65.
[15] Lin F Y, Zheng Q Z, Hu Y J , et al. The transformation and application of medial axis of a planar shape[J]. Computer Applications and Software, 2000,17(6):61-65.
[16] 艾廷华, 郭仁忠 . 基于约束Delaunay结构的街道中轴线提取及网络模型建立[J]. 测绘学报, 2000,29(4):348-354.
[16] Ai T H, Guo R Z . Extracting center-lines and building street network based on constrained Delaunay triangulation[J]. Acta Geodaetica et Cartographica Sinica, 2000,29(4):348-354.
[17] 乔庆华, 吴凡 . 河流中轴线提取方法研究[J]. 测绘通报, 2004(5):14-17.
[17] Qiao Q H, Wu F . Research on methods for medial axis extraction[J]. Bulletin of Surveying and Mapping, 2004(5):14-17.
[18] 杜世宏, 杜道生, 樊红 , 等. 基于栅格数据提取主骨架线的新算法[J]. 武汉测绘科技大学学报, 2000,25(5):432-436.
[18] Du S H, Du D S, Fan H , et al. A new raster-based algorithm for extracting main skeleton line of polygon[J]. Journal of Wuhan Technical University of Surveying and Mapping, 2000,25(5):432-436.
[19] 王辉连, 武芳, 王宝山 , 等. 利用数学形态学提取骨架线的改进算法[J]. 测绘科学, 2006,31(1):29-32.
[19] Wang H L, Wu F, Wang B S , et al. Improved algorithm for extracting skeleton line of polygon based on mathematical morphology[J]. Science of Surveying and Mapping, 2006,31(1):29-32.
[20] 江岭, 杨昕, 汤国安 . 基于欧氏区域分配的面状河流中轴线提取方法研究[J]. 测绘通报, 2011(9):21-24.
[20] Jiang L, Yang X, Tang G A . Research on methods for medial axis extraction based on Euclidean allocation[J]. Bulletin of Surveying and Mapping, 2011(9):21-24.
[21] 郭邦梅, 王涛, 赵荣 , 等. 面状要素骨架线提取算法的研究[J]. 测绘通报, 2010(12):17-19,53.
[21] Gu B M, Wang T, Zhao R , et al. Research on algorithm of polygon skeleton line extracting[J]. Bulletin of Surveying and Mapping, 2010(12):17-19,53.
[22] Aurenhammer F . Weighted skeletons and fixed share decomposition[J]. Computational Geometry, 2008,40(2):93-101.
[23] 许丽敏, 薛安 . 基于Delaunay三角网与Voronoi图联合提取等高线骨架的地形重建算法研究[J]. 北京大学学报(自然科学版), 2009,45(4):647-652.
[23] Xu L M, Xue A . Terrain reconstruction from contours by skeleton extraction using Delaunay triangulation and Voronoi diagram[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009,45(4):647-652.
[24] 陈秀萍, 黄彦锋, 吕翠华 . DLG制图数据生产中AutoCAD自动填充的实现方法[J]. 测绘科学, 2012,37(4):175-177.
[24] Chen X P, Huang Y F, Lyu C H . Method of auto-hatch based on AutoCAD about 3D digital cartographic data[J]. Science of Surveying and Mapping, 2012,37(4):175-177.
[1] LI Dong, TANG Cheng, ZOU Tao, HOU Xiyong. Detection and assessment of the physical state of offshore artificial reefs[J]. Remote Sensing for Natural Resources, 2022, 34(1): 27-33.
[2] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[3] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[4] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[5] WANG Shuang, ZHANG Lei, ZHANG Junyong, WANG Yile. Characteristics of GIS applications in national fitness[J]. Remote Sensing for Natural Resources, 2021, 33(4): 265-271.
[6] ZHAO Longxian, DAI Jingjing, ZHAO Yuanyi, JIANG Qi, LIU Tingyue, FU Minghai. A study of mine site selection of the Duolong ore concentration area in Tibet based on RS and GIS technology[J]. Remote Sensing for Land & Resources, 2021, 33(2): 182-191.
[7] MIAO Miao, XIE Xiaoping. Spatial-temporal evolution analysis of Rizhao coastal zone during 1988—2018 based on GIS and RS[J]. Remote Sensing for Land & Resources, 2021, 33(2): 237-247.
[8] ZHANG Mengsheng, YANG Shuwen, JIA Xin, ZANG Liri. An automatic registration algorithm for remote sensing images based on grid index[J]. Remote Sensing for Land & Resources, 2021, 33(1): 123-128.
[9] YAO Kun, ZHANG Cunjie, HE Lei, LI Yuxia, LI Xiaoju. Dynamic evaluation and prediction of ecological environment vulnerability in the middle-upper reaches of the Yalong River[J]. Remote Sensing for Land & Resources, 2020, 32(4): 199-208.
[10] Yongquan WANG, Qingquan LI, Chisheng WANG, Jiasong ZHU, Xinyu WANG. Tethered UAVs-based applications in emergency surveying and mapping[J]. Remote Sensing for Land & Resources, 2020, 32(1): 1-6.
[11] Yiqiang SHI, Qiuqin DENG, Jun WU, Jian WANG. Regression analysis of MODIS aerosol optical thickness and air quality index in Xiamen City[J]. Remote Sensing for Land & Resources, 2020, 32(1): 106-114.
[12] Xuanchi CHEN, Rong CHEN, Yufeng WU, Yueyue WANG. Research on the geological background of tea planting in Duyun City based on RS and GIS[J]. Remote Sensing for Land & Resources, 2020, 32(1): 224-231.
[13] Zhaorong MEI, Yunju LI, Xiang KANG, Shanbao WEI, Jianjun PAN. Temporal and spatial evolution in landscape pattern of mining site area based on moving window method[J]. Remote Sensing for Land & Resources, 2019, 31(4): 60-68.
[14] Quan AN, Zhonghua HE, Cuiwei ZHAO, Hong LIANG, Shulin JIAO, Chaohui YANG. GIS-based estimation of fractal dimension and geomorphological development of the water system in the dam construction area[J]. Remote Sensing for Land & Resources, 2019, 31(4): 104-111.
[15] Weidong ZHAO, Yong ZHENG, Haonan ZHANG, Qiong JIANG, Jiajia WEI. Remote sensing interpretation and spatial distribution characteristics of the Anhui segment of Tanlu fault zone based on multi-source data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 79-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech