Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (1) : 98-105     DOI: 10.6046/gtzyyg.2020.01.14
|
Study of ore control information in Rongle area of Tibet based on high resolution remote sensing data
Lihua FU, Ce ZHANG
Airborne Survey and Remote Sensing Center of Nuclear Industry, Shijiazhuang 050002, China
Download: PDF(4193 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

High-resolution remote sensing data have rich information and hence can be used to better identify micro-lithology, structure and other ore-controlling information. In order to study the extraction of ore-controlling information of high-resolution remote sensing data in Rongle area of Tibet where the elevation is high and the bedrock is exposed, the authors interpreted the ore-controlling information of strata, lithology, rock mass, structure, contact zone and other information closely related to copper polymetallic mineralization in this area on the basis of the best band combination determined by WorldView-2 high-resolution remote sensing data. Using ASTER data, the authors employed principal component analysis (PCA) to extract the mineralization-related remote sensing alteration information of iron stain, aluminum hydroxyl group and magnesium hydroxyl group. Based on comprehensive regional copper mineralization rules, the authors constructed a remote sensing prospecting model for ore-controlling information of magmatic hydrothermal copper deposits through human-computer interaction interpretation. Five prospecting targets were delineated and good mineralization clues were found through field investigation. The results provide basic information and reference basis for promoting local prospecting process. The results show that the high-resolution remote sensing data can meet the needs of mineral resources exploration and resource evaluation in the high-altitude environment hostile areas in Western China and highlight the fast, efficient and reliable application effect of high-resolution remote sensing.

Keywords high resolution remote sensing      ore control information      prospecting applications      Rongle area     
:  TP79  
Issue Date: 14 March 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lihua FU
Ce ZHANG
Cite this article:   
Lihua FU,Ce ZHANG. Study of ore control information in Rongle area of Tibet based on high resolution remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(1): 98-105.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.01.14     OR     https://www.gtzyyg.com/EN/Y2020/V32/I1/98
Fig.1  Remote sensing interpretation result of mineral control information in Rongle area
Fig.2  WorldView-2 B8(R), B4(G), B2(B) pseudo-color composite image and alteration anomaly distribution in Rongle area
Fig.3  Geological mineralization information in Jiabuya
控矿信息要素 地质信息特征 遥感信息特征
大地构造位置 班公湖—怒江结合带西段阿翁错陆缘火山岩浆弧带
导矿、赋矿构造 NW向区域断裂为导矿断裂,次级断裂为赋矿构造 线性色调影纹特征,地貌显示呈直线形的山脊或沟谷
矿化层位、岩性 白垩系去申拉组(K1q)蚀变安山岩、玄武安山岩、砂岩和板岩等 蓝灰色夹黄色条带,斑状、条带状影纹,影纹粗糙,树枝状水系、局部羽状水系,水系密度较大,条状地形、丘陵地貌、山脊浑圆
岩浆活动 燕山晚期中酸性侵入体 灰红色、灰黄色,浑圆状、透镜状,与围岩边界清晰; 圆顶缓坡中低山,放射状水系,环弧状影像清楚
成矿部位 侵入岩与去申拉组(K1q)的接触带 色调、影纹界面,条带状色调异常
蚀变异常 绿泥石化、绿帘石化和绢云母化、高岭石化 主要为铁染(Fe2+和Fe3+)异常,其次为铝羟基(Al-OH)异常
野外找矿线索 黄铜矿化、黄铁矿化和孔雀石化是矿化露头的直接标志
Tab.1  Remote sensing prospecting mode in Rongle area
Fig.4  Field confirmation of target area Ⅴ

采样
点号
Au/
(g·t-1)
Ag/
(g·t-1)
Cu/% Pb/% Zn/% Mo/
(g·t-1)
Cr/
(g·t-1)
Ni/
(g·t-1)
Fe/% Ti/
(g·t-1)
As/
(g·t-1)
Sb/
(g·t-1)
1 D1016 7.32 280.00 16.85 84.70 11.90 1.02 11.40 4.20 3.70 249.00 61.00 8.58
2 D1016 0.16 5.09 0.31 27.40 11.50 1.94 12.00 5.50 3.32 105.00 83.00 2.32
3 D1017 0.65 92.60 3.53 44.40 8.40 1.34 9.80 5.50 3.09 50.00 3.50 0.53
4 D1018 11.90 194.00 35.97 180.00 8.90 30.00 8.90 2.50 9.12 196.00 2.40 0.35
5 D2013 6.27 0.82 11.90 69.80 6.51 76.60 21.40 3.91 2880.00 21.00 0.48
6 D2013 0.77 91.30 1.70 10.20 13.70 1.29 7.90 4.40 2.40 129.00 3.40 0.35
Tab.2  Semi-quantitative analysis of copper mineralized samples in the target areas
[1] 张志军, 潘思远, 李明 , 等. 北巴颜喀拉山地区岩性遥感解译标志建立[J]. 国土资源遥感, 2017,29(1):199-207.doi: 10.6046/gtzyyg.2017.01.30.
[1] Zhang Z J, Pan S Y, Li M , et al. Establishment of lithological remote sensing interpretation keys in north Bayan Hara Mountain[J]. Remote Sensing for Land and Resources, 2017,29(1):199-207.doi: 10.6046/gtzyyg.2017.01.30.
[2] 张微, 金谋顺, 张少鹏 , 等. 高分遥感卫星数据在东昆仑成矿带找矿预测中的应用[J]. 国土资源遥感, 2016,28(2):112-119.doi: 10.6046/gtzyyg.2016.02.18.
[2] Zhang W, Jin M S, Zhang S P , et al. Application of high resolution remote sensing data to ore-prospecting prediction in East Kunlun metallogenic belt[J]. Remote Sensing for Land and Resources, 2016,28(2):112-119.doi: 10.6046/gtzyyg.2016.02.18.
[3] 付丽华, 张策, 魏本赞 , 等. 西藏达朵希巴地区成矿条件分析及遥感找矿预测[J]. 矿产勘查, 2015,6(5):535-541.
[3] Fu L H, Zhang C, Wei B Z , et al. Analysis of metallogenic conditions and prospecting prediction by remote sensing technology in Daduoxiba area,Tibet[J]. Mineral Exploration, 2015,6(5):535-541.
[4] 张云峰, 李领军, 冯淳 . ASTER数据在北方铝土矿预普查中的应用——以豫西渑池地区为例[J]. 国土资源遥感, 2012,24(1):48-52.doi: 10.6046/gtzyyg.2012.01.09.
[4] Zhang Y F, Li L J, Feng C . The application of ASTER data to bauxite deposit pre-survey in Northern China:A case study of Mianchi area,Western Henan[J]. Remote Sensing for Land and Resources, 2012,24(1):48-52.doi: 10.6046/gtzyyg.2012.01.09.
[5] 韩海辉, 王艺霖, 任广利 , 等. 基于ASTER数据的北山方山口地区蚀变矿物提取与找矿应用[J]. 遥感技术与应用, 2016,31(2):368-377.
[5] Han H H, Wang Y L, Ren G L , et al. Extraction and application of altered mineral in prospecting from ASTER data in Fangshankou,Beishan[J]. Remote Sensing Technology and Application, 2016,31(2):368-377.
[6] 杨金中, 赵玉灵 . 遥感技术的特点及其在地质矿产调查中的作用[J]. 矿产勘查, 2015,6(5):529-534.
[6] Yang J Z, Zhao Y L . Technical features of remote sensing and its application in the geological survey and mineral resources survey[J]. Mineral Exploration, 2015,6(5):529-534.
[7] 付丽华, 李名松, 王永军 , 等. 西藏玛那国地区遥感找矿预测[J]. 矿产勘查, 2015,6(2):171-177.
[7] Fu L H, Li M S, Wang Y J , et al. Prospecting prediction by remote sensing approach in Managuo area,Tibet[J]. Mineral Exploration, 2015,6(2):171-177.
[8] 汪友明 . 革吉县幅(I44C004003)1∶25万区域地质调查报告[R]. 成都:四川省地质调查院, 2003.
[8] Wang Y M . Geji County(I44C004003)1∶250 000 Regional Geological Survey Report[R]. Chengdu:Sichuan Geological Survey Institute, 2003.
[9] 王永军, 张策, 付丽华 , 等. 班公湖—怒江成矿带遥感地质调查成果报告[R]. 石家庄:核工业航测遥感中心, 2013.
[9] Wang Y J, Zhang C, Fu L H , et al. Report on Remote Sensing Geological Survey Results of Bangonghu—Nujiang Metallogenic Belt[R]. Shijiazhuang:Airborne Survey and Remote Sensing Center of Nuclear Industry, 2013.
[10] 杨金中, 孙延贵, 秦绪文 , 等. 高分辨率遥感地质调查[M]. 北京: 测绘出版社, 2013: 45-47.
[10] Yang J Z, Sun Y G, Qin X W , et al. High-Resolution Remote Sensing Geological Survey[M]. Beijing: Surveying and Mapping Publishing House, 2013: 45-47.
[11] 钱建平, 张渊, 赵小星 , 等. 内蒙古东乌旗遥感构造和蚀变信息提取与找矿预测[J]. 国土资源遥感, 2013,25(3):109-117.doi: 10.6046/gtzyyg.2013.03.19.
[11] Qian J P, Zhang Y, Zhao X X , et al. Extraction of linear structure and alteration information based on remote sensing image and ore-prospecting prognosis for Dongwu Banner,Inner Mongolia[J]. Remote Sensing for Land and Resources, 2013,25(3):109-117.doi: 10.6046/gtzyyg.2013.03.19.
[12] 王瑞国 . 基于WorldView-2数据的乌东煤矿地质灾害遥感调查及成因分析[J]. 国土资源遥感, 2016,28(2):132-138.doi: 10.6046/gtzyyg.2016.02.21.
[12] Wang R G . Remote sensing investigation and analysis of geological disasters in the Wudong coal mine based on WorldView-2 data[J]. Remote Sensing for Land and Resources, 2016,28(2):132-138.doi: 10.6046/gtzyyg.2016.02.21.
[13] 唐超, 陈建平, 张瑞丝 , 等. 基于ASTER遥感数据的班怒成矿带矿化蚀变信息提取[J]. 遥感技术与应用, 2013,28(1):122-128.
[13] Tang C, Chen J P, Zhang R S , et al. Alteration from ASTER remote sensing data in Ban Nu metallogenic belt,Gaize,Tibet[J]. Remote Sensing Technology and Application, 2013,28(1):122-128.
[14] 范玉海, 王辉, 杨兴科 , 等. 基于高分辨率遥感数据的稀有金属矿化带勘查[J]. 国土资源遥感, 2018,30(1):128-134.doi: 10.6046/gtzyyg.2018.01.18.
[14] Fan Y H, Wang H, Yang X K , et al. Application of high-resolution remote sensing technology to the prospecting for rare metal mineralization belt[J]. Remote Sensing for Land and Resources, 2018,30(1):128-134.doi: 10.6046/gtzyyg.2018.01.18.
[15] 夏清, 杨武年, 赵妮 . 青藏大陆北缘盆山耦合带库斯拉甫地区遥感蚀变信息提取[J]. 国土资源遥感, 2014,26(1):127-131.doi: 10.6046/gtzyyg.2014.01.22.
[15] Xia Q, Yang W N, Zhao N . Extraction of remote sensing alteration information of Kosrap area in northern basin-mountain coupling zone of Tibetan Plateau[J]. Remote Sensing for Land and Resources, 2014,26(1):127-131.doi: 10.6046/gtzyyg.2014.01.22.
[16] 金谋顺, 王辉, 张微 , 等. 高分辨率遥感数据铁染异常提取方法及其应用[J]. 国土资源遥感, 2015,27(3):122-127.doi: 10.6046/gtzyyg.2015.03.20.
[16] Jin M S, Wang H, Zhang W , et al. Method for extraction of ferric contamination anomaly from high-resolution remote sensing data and its applications[J]. Remote Sensing for Land and Resources, 2015,27(3):122-127.doi: 10.6046/gtzyyg.2015.03.20.
[17] 张志军, 甘甫平, 李贤庆 , 等. 基于ASTER数据的蚀变矿物信息提取——以哈密黄山铜镍矿区为例[J]. 国土资源遥感, 2012,24(2):85-91.doi: 10.6046/gtzyyg.2012.02.16.
[17] Zhang Z J, Gan F P, Li X Q , et al. The extraction of altered mineral information based on ASTER data:A case study of the Huangshan copper-nickel ore district in Hami[J]. Remote Sensing for Land and Resources, 2012,24(2):85-91.doi: 10.6046/gtzyyg.2012.02.16.
[18] 别小娟, 张廷斌, 孙传敏 , 等. 藏东罗布莎蛇绿岩遥感岩矿信息提取方法研究[J]. 国土资源遥感, 2013,25(3):72-78.doi: 10.6046/gtzyyg.2013.03.13.
[18] Bie X J, Zhang T B, Sun C M , et al. Study of methods for extraction of remote sensing information of rocks and altered minerals from Luobusha ophiolite in east Tibet[J]. Remote Sensing for Land and Resources, 2013,25(3):72-78.doi: 10.6046/gtzyyg.2013.03.13.
[19] 李伟 . 西藏改则地区去申拉组火山岩地球化学特征及锆石年代学制约[D]. 北京:中国地质大学(北京), 2012.
[19] Li W . Geochemistry and Zircon U-Pb Chronology of Qushenla Group Volcanic in Cerze,Tibet[D]. Beijing:China University of Geosciences(Beijing), 2012.
[20] 曲晓明, 王瑞江, 辛洪波 , 等. 西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学[J]. 地球化学, 2009,38(6):523-535.
[20] Qu X M, Wang R J, Xin H B , et al. Geochronology and geochemistry of igneous rocks related to the subduction of the Tethys oceanic plate along the Bangong Lake arc zone,the western Tibetan Plateau[J]. Geochimica, 2009,38(6):523-535.
[21] 胡隽, 万永文, 陶专 , 等. 班公湖—怒江缝合带西段特提斯洋盆南向俯冲的地球化学和年代学证据[J]. 成都理工大学学报(自然科学版), 2014,41(4):505-514.
[21] Hu J, Wan Y W, Tao Z , et al. New geochemistry and geochronology evidences related to southward subduction of Tethys ocean basin in west segment of Bangonghu-Nujiang suture belt[J]. Journal of Chengdu University of Technology(Science and Technology Edition), 2014,41(4):505-514.
[1] HU Suliyang, LI Hui, GU Yansheng, HUANG Xianyu, ZHANG Zhiqi, WANG Yingchun. An analysis of land use changes and driving forces of Dajiuhu wetland in Shennongjia based on high resolution remote sensing images: Constraints from the multi-source and long-term remote sensing information[J]. Remote Sensing for Land & Resources, 2021, 33(1): 221-230.
[2] WU Tong, PENG Ling, HU Yuan. Informal garbage dumps detection in high resolution remote sensing images based on SU-RetinaNet[J]. Remote Sensing for Land & Resources, 2020, 32(3): 90-97.
[3] Chunsen ZHANG, Rongrong WU, Guojun LI, Weihong CUI, Chenyi FENG. High resolution remote sensing image object change detection based on box-plot method[J]. Remote Sensing for Land & Resources, 2020, 32(2): 19-25.
[4] Yufeng LIU, Ying PAN, Hu LI. Study of crown information extraction of Picea schrenkiana var. tianschanicabased on high-resolution satellite remote sensing data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 112-119.
[5] Hui HUANG, Xiongwei ZHENG, Genyun SUN, Yanling HAO, Aizhu ZHANG, Jun RONG, Hongzhang MA. Seismic image classification based on gravitational self-organizing map[J]. Remote Sensing for Land & Resources, 2019, 31(3): 95-103.
[6] Qifang XIE, Guoqing YAO, Meng ZHANG. Research on high resolution image object detection technology based on Faster R-CNN[J]. Remote Sensing for Land & Resources, 2019, 31(2): 38-43.
[7] Ling CHEN, Jia JIA, Haiqing WANG. An overview of applying high resolution remote sensing to natural resources survey[J]. Remote Sensing for Land & Resources, 2019, 31(1): 1-7.
[8] SU Tengfei, ZHANG Shengwei, LI Hongyu. Heuristics optimized segmentation of agricultural area for high resolution remote sensing image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 106-113.
[9] DAI Jingjing, WANG Denghong, WU Yanan. Investigation of rare metal mine using high resolution remote sensing data: A case study of No. 414 rare metal mine in Yichun, Jiangxi Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 104-110.
[10] CAI Hongyue, YAO Guoqing. Auto-extraction of road intersection from high resolution remote sensing image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 63-71.
[11] GUO Qiqian, LI Shengle, LIU Zhumei. Platform of online interpretation and attitude measurement for faults using high resolution remote sensing image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 190-196.
[12] YANG Xianhua, HUANG Jie, TIAN Li, LIU Zhi, HAN Lei. A discussion on comprehensive governance of mine environment based on high resolution remote sensing data: A case of Maoniuping REE deposit, Mianning County[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 115-121.
[13] LI Xianghui, CHEN Yixiang, WANG Haibin, ZHANG Enbing, QIN Kun. Urban area detection based on Gabor filtering and density of local feature points[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 59-64.
[14] GAO Yongzhi, CHU Yu, LIANG Wei. Remote sensing monitoring and analysis of tailings ponds in the ore concentration area of Heilongjiang Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 160-163.
[15] YANG Yun, XU Li, YAN Peili. Urban land use/cover classification of remote sensing using random forests under the framework of conditional random fields[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 51-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech