Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (2) : 237-247     DOI: 10.6046/gtzyyg.2020229
|
Spatial-temporal evolution analysis of Rizhao coastal zone during 1988—2018 based on GIS and RS
MIAO Miao(), XIE Xiaoping()
School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China
Download: PDF(5647 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

With the implementation of the National Marine Strategy and the deepening of coastal zone development in coastal areas, it is necessary to study the coastal zone evolution as well as monitor and protect the coastal zone, which will provide a reasonable basis for coastal zone development. In this paper, remote sensing (RS) and (geographic information system, GIS) technology, Landsat, (digital elevation model, DEM) and tidal data were used to extract coastal zone data of Rizhao City in 1988, 1998, 2008 and 2018, and analyze the coastline distribution characteristics, the spatio-temporal distribution and land use status of coastal zone and dynamic evolution of estuary. The results are as follows: Firstly, the coastline of Rizhao showed an overall growth trend from 1988 to 2018, with a total increase of 52.7 km; The period of 1998—2008 experienced the fastest coastline growing, with the growth rate being 0.68 km/a. The distribution of coastline was dominated by sandy coastline and artificial coastline. Secondly, the land use change in the coastal zone was manifested in the continuous increase of the construction land area, with its proportion from 213.77 km2 to 413.93 km2, while the farmland/grassland area and its proportion decreased from 445.50 km2 to 287.03 km2. The overall trend was that a large amount of cultivated land/grassland was converted to construction land. Thirdly, the estuary was a place where the change of coastal erosion and deposition was the most prominent. The estuary was eroded and the estuarine shoreline retreated from 1988 to 1998. The estuary remained relatively stable from 1998 to 2008. The estuary silted up to the sea and the coastline grew seaward from 2008 to 2018. In general, changes in the landward direction of the coastal zone are affected by geomorphic types, sea level rise, sediment discharge, artificial sand mining and some other factors. Changes in the seaward direction are related to sediment accumulation, establishment of breeding areas and ports, reclamation and other coastal development activities. The conclusion of this paper can provide reference for the planning and management of Rizhao coastal zone.

Keywords coastal zone      change processes      RS      GIS      Rizhao City      Shandong Province     
ZTFLH:  TP79  
Corresponding Authors: XIE Xiaoping     E-mail: 1522769457@qq.com;xp.xie@263.net
Issue Date: 21 July 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Miao MIAO
Xiaoping XIE
Cite this article:   
Miao MIAO,Xiaoping XIE. Spatial-temporal evolution analysis of Rizhao coastal zone during 1988—2018 based on GIS and RS[J]. Remote Sensing for Land & Resources, 2021, 33(2): 237-247.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020229     OR     https://www.gtzyyg.com/EN/Y2021/V33/I2/237
Fig.1  Location of study area
海岸类型 定义 海岸影像样例 影像解译标志
基岩海岸线 由濒海的山麓和凸出的剥蚀面伸向海中形成 明显的凹凸感和山脉纹理特征,分布散乱,且亮度不均,近岸植被呈浅红色或暗红色,岩石呈灰白色
砂质海岸线 是砂粒在海浪作用下堆积形成 岸线平直,向陆侧干燥沙滩的光谱反射率高,为亮白色; 向海侧的沙滩含水量高,光谱反射率稍低,较暗
未开发淤泥质海岸线 是陆源泥沙在潮汐作用下不断淤积形成 近红外波段对海水浑浊的地方发射率较高,红光波段对完全暴露的地方反射率较低
已开发淤泥质海岸线 近岸一侧多建有虾池、盐田,近海一侧修筑防堤坝 可选择地物(如植被,虾池,公路等)与淤泥质海岸的分界线作为海岸线
人工海岸线 在海陆交界处由混凝土修筑而成的建筑 几何形状较规则,在近红外波段的图像上具有较高的光谱反射率,多为灰白色
Tab.1  Coastline type in Rizhao City
Fig.2  Theory of counting coastline position
Fig.3  The fit curve of tidal level in 2017—2019
Fig.4  Slope map of the study area
图像获取日期 农历 校正使用的
数据日期
H1/
cm
H2/
cm
h/
cm
L/
m
2018-01-13 十一月廿七 2018-01-13 95 376 281 70
2008-06-26 五月廿三 2019-06-25 388 420 32 8
1998-09-19 七月廿九 2018-09-08 161 494 333 83
1988-10-09 八月廿九 2018-10-08 142 494 352 88
Tab.2  Tidal level data and calculation results
海岸类型 人工海岸 基岩海岸 砂质海岸 已开发淤
泥质海岸
未开发淤
泥质海岸
重叠像素点 34 31 16 19 24
相邻像素点 6 9 15 13 9
提取失败像素点 0 0 9 8 7
Tab.3  The veracity of pixel position
Fig.5  Changes of coastline in 1988—2018
年份 基岩海岸线 砂质海岸线 淤泥质海岸线 人工海岸线 海岸线总
长度/km
年变化率/
(km·a-1)
长度/km 百分比/% 长度/km 百分比/% 长度/km 百分比/% 长度/km 百分比/%
1988年 12.03 10.23 47.21 40.15 27.15 23.09 31.06 26.42 117.56 1.21
1998年 9.15 7.06 45.36 34.98 14.15 10.91 61.01 47.05 129.67 2.24
2008年 6.69 4.40 36.21 23.83 11.2 7.37 97.81 64.38 151.91 1.48
2018年 5.13 3.08 34.37 20.61 10.45 6.27 116.78 70.04 166.73
Tab.4  Length and proportion statistics of coastline in each period
年份 总体分类精度/% Kappa
2018年 94.985 8 0.923 6
2008年 97.182 4 0.953 7
1998年 95.078 5 0.936 1
1988年 94.672 6 0.928 1
Tab.5  Classification accuracy
Fig.6  Temporal-spatial features of land cover change in Rizhao coastal zone from 1988 to 2018
年份 建设用地 耕地/草地 水体 林地
面积/km2 百分比/% 面积/km2 百分比/% 面积/km2 百分比/% 面积/km2 百分比/%
1988年 213.77 21.73 445.50 45.29 228.74 23.25 95.61 9.72
1998年 288.36 26.42 456.62 41.83 224.63 20.58 122.04 11.18
2008年 351.24 33.73 408.45 39.22 218.26 20.96 65.37 6.28
2018年 413.93 39.43 287.03 27.34 246.72 23.50 102.02 9.72
Tab.6  Land cover type area and proportion from 1988 to 2018 in Rizhao coastal zone
土地利用类型 林地 建设用地 水体 耕地/草地
面积/km2 百分比/% 面积/km2 百分比/% 面积/km2 百分比/% 面积/km2 百分比/%
林地 41.60 39.61 21.05 9.58 3.71 0.57 48.08 10.26
建设用地 33.58 31.97 133.85 60.94 84.63 12.97 185.51 39.60
水体 1.43 1.36 3.93 1.79 560.93 85.96 1.78 0.38
耕地/草地 28.42 27.06 60.82 27.69 3.30 0.51 233.08 49.76
Tab.7  Transition matrix of land over types in Rizhao coastal zone from 1988 to 2018
Fig.7-1  Changes of coastline in estuary from 1988 to 2018
Fig.7-2  Changes of coastline in estuary from 1988 to 2018
名称 流域面积/km2 长度/km 入海口位置 各时相河流入海口遥感影像
1988年 1998年 2008年 2018年
两城河 516.9 47.00 两城镇安家村东
傅疃河 1 060.1 60.72 奎山镇夹仓东南
绣针河 396.0 24.42 岚山狄水村东
Tab.8  The characteristics of the estuary
[1] 索安宁. 海岸空间开发遥感监测与评估[M]. 北京: 科学出版社, 2017:68-136.
[1] Suo A N. Monitoring and assessment of coastal development[M]. Beijing: Science Press, 2017:68-136.
[2] 印萍, 林良俊, 陈斌, 等. 中国海岸带地质资源与环境评价研究[J]. 中国地质, 2017, 44(5):842-856.
[2] Yin P, Lin L J, Du B, et al. Coastal zone geo-resources and geo-environment in China[J]. Geology in China, 2017, 44(5):842-856.
[3] 张玉新, 侯西勇. 国际海岸线变化研究进展综述——基于文献计量学方法[J]. 应用海洋学学报, 2020, 39(2):289-301.
[3] Zhang Y X, Hou X Y. A bibliometric review of the international shoreline changes[J]. Journal of Applied Oceanography, 2020, 39(2):289-301.
[4] 王焰新, 甘义群, 邓娅敏, 等. 海岸带海陆交互作用过程及其生态环境效应研究进展[J]. 地质科技通报, 2020, 39(1):1-9.
[4] Wang Y X, Gan Y Q, Deng Y M, et al. Land-ocean interactions and their eco-environmental effects in the coastal zone:Current progress and future perspectives[J]. Bulletin of Geological Science and Technology, 2020, 39(1):1-9.
[5] 吴文菁, 陈佳颖, 叶润宇, 等. 台风灾害下海岸带城市社会-生态系统脆弱性评估——大数据视角[J]. 生态学报, 2019, 39(19):7079-7086.
[5] Wu W J, Chen J Y, Ye R Y, et al. Vulnerability assessment of urban socio-ecological systems in coastal zones under the influence of typhoons:Big data perspective[J]. Acta Ecologica Sinica, 2019, 39(19):7079-7086.
[6] 刘希洋. 改革开放以来山东沿海风暴潮灾害研究述评[J]. 防灾科技学院学报, 2020, 22(1):72-79.
[6] Liu X Y. A review of the researches on storm surge disasters along Shandong coast since China’s reform and opening up[J]. Journal of Institute of Disaster Prevention, 2020, 22(1):72-79.
[7] 赵琪琪. 我国沿海主要海洋灾害类型及其影响分析[D]. 烟台:鲁东大学, 2018.
[7] Zhao Q Q. The study on coastal major hazards and their impact analysis on the coast of China[D]. Yantai:Ludong University, 2018.
[8] 韩富伟, 苗丰民, 赵建华, 等. 3S技术在海域使用动态监测中的应用[J]. 海洋环境科学, 2008, 27(2):85-89.
[8] Han F W, Miao F M, Zhao J H, et al. Application of 3S technique in dynamic monitoring in sea usage[J]. Mrine Environmental Science, 2008, 27(2):85-89.
[9] 苏奋振. 海岸带遥感评估[M]. 北京: 科学出版社, 2015:1-79.
[9] Su Z F. Coastal zone remote sensing assessment[M]. Beijing: Science Press, 2015:1-79.
[10] 姚晓静, 高义, 杜云艳, 等. 基于遥感技术的近30 a海南岛海岸线时空变化[J]. 自然资源学报, 2013, 28(1):114-124.
[10] Yao X J, Gao Y, Du Y Y, et al. Spatial and temporal changes of hainan coastline in the past 30 years based on RS[J]. Journal of Natural Resources, 2013, 28(1):114-124.
[11] 陈金月. 基于GIS和RS的近40年珠江三角洲海岸线变迁及驱动因素研究[D]. 成都:四川师范大学, 2017.
[11] Chen J Y. Changes and driving factors of coastline in the Pearl River delta in recent 40 years based on GIS and RS[D]. Chengdu:Sichuan Normal University, 2017.
[12] 康波, 林宁, 徐文斌, 等. 基于遥感和GIS的长岛南五岛近30年海岸线时空变迁分析[J]. 海洋通报, 2017, 36(5):585-593.
[12] Kang B, Lin N, Xu W B, et al. Spatial-temporal changes of the coastline in five south island of Long Island in recent three decades on RS and GIS[J]. Marine Science Bulletin, 2017, 36(5):585-593.
[13] 姜立芳, 王晓光. 遥感技术在日照海岸带综合地质调查中的应用[J]. 中国新技术新产品, 2016,(1):27.
[13] Jiang L F, Wang X G. Application of RS in comprehensive geological survey of Rizhao coastal zone[J]. China New Technologies and Products, 2016,(1):27.
[14] 刘玉红, 刘培渊, 卜凡升, 等. 日照市近30年海岸线变迁遥感监测研究[J]. 绿色科技, 2018,(6):139-141.
[14] Liu Y H, Liu P Y, Bu F S, et al. Remote sensing monitoring of coastline changes in Rizhao City during the past 30 years[J]. Journal of Green Science and Technology, 2018,(6):139-141.
[15] 徐文阳, 谢小平, 陈芝聪, 等. 基于遥感影像的日照海岸带景观格局动态演化分析[J]. 曲阜师范大学学报, 2017, 43(3):93-99.
[15] Xu W Y, Xie X P, Chen Z C, et al. The analysis of dynamic evolution on coastal landscape patterns based on the satellite images in Rizhao City,Shandong Province[J]. Journal of Qufu Normal University, 2017, 43(3):93-99.
[16] 王松涛, 印萍, 吴振. 山东日照海岸带地质[M]. 北京: 海洋出版社, 2014:6-16.
[16] Wang S T, Ying P, Wu Z. Shandong Rizhao coastal geology[M]. Beijing: Ocean Press, 2014:6-16.
[17] 王松涛, 吴振, 衣伟虹, 等. 日照市海岸带地质环境质量评价研究[J]. 山东国土资源, 2014, 30(12):54-58.
[17] Wang S T, Wu Z, Yi W H, et al. Evaluation of geological and environmental quality of coastal zones in Rizhao City[J]. Shandong Land and Resources, 2014, 30(12):54-58.
[18] 宋红瑛, 刘金庆, 印萍, 等. 日照近海表层沉积物粒度特征与沉积环境[J]. 中国海洋大学学报(自然科学版), 2016, 46(3):96-104.
[18] Song H Y, Liu J Q, Yin P, et al. Grain size characteristics of the surface sediment and sedimentary environment in Rizhao offshore[J]. Periodical of Ocean University of China, 2016, 46(3):96-104.
[19] 种晴晴. 基于遥感的日照海岸线变迁分析[D]. 曲阜:曲阜师范大学, 2016.
[19] Zhong Q Q. Analysis of Rizhao coastline change based on remote sensing[D]. Qufu:Qufu Normal University, 2016.
[20] 赵建华, 索安宁, 徐京萍. 海域使用遥感监测技术[M]. 北京: 海洋出版社, 2017:133-162.
[20] Zhao J H, Suo A N, Xu J P. Remote sensing monitoring technology is used in sea areas[M]. Beijing: Ocean Press, 2017:133-162.
[21] 孙伟富, 马毅, 张杰, 等. 不同类型海岸线遥感解译标志建立和提取方法研究[J]. 测绘通报, 2011,(3):41-44.
[21] Sun W F, Ma Y, Zhang J, et al. Study of remote sensing interpretation keys and extraction technique of different types of shoreline[J]. Bulletin of Surveying and Mapping, 2011,(3):41-44.
[22] 吴一全, 刘忠林. 遥感影像的海岸线自动提取方法研究进展[J]. 遥感学报, 2019, 23(4):582-602.
[22] Wu Y Q, Liu Z L. Research progress on methods of automatic coastline extraction based on remote sensing images[J]. Journal of Remote Sensing, 2019, 23(4):582-602.
[23] 梁立, 刘庆生, 刘高焕, 等. 基于遥感影像的海岸线提取方法综述[J]. 地球信息科学学报, 2018, 20(12):1745-1755.
doi: 10.12082/dqxxkx.2018.180152
[23] Liang L, Liu Q S, Liu G H, et al. Review of coastline extraction methods based on remote sensing images[J]. Journal of Geo-Information Science, 2018, 20(12):1745-1755.
[24] 傅晓俊, 袁琳琳, 魏翔. 基于遥感影像水体提取方法的比较与分析[J]. 测绘与空间地理信息, 2019, 42(8):158-160.
[24] Fu X J, Yuan L L, Wei X. Comparison and analysis of water extraction methods based on remote sensing image[J]. Geomatics & Spatial Information Technology, 2019, 42(8):158-160.
[25] 王大钊, 王思梦, 黄昌. Sentinel-2和Landsat8的四种常用水体指数地表水体提取对比研究[J]. 国土资源遥感, 2019, 31(3):1-9.doi: 10.6046/gtzyyg.2019.03.20.
doi: 10.6046/gtzyyg.2019.03.20
[25] Wang D Z, Wang S M, Huang C. A comparison of Sentinel-2 and Landsat8 imagery for surface water extraction using four common water indexes[J]. Remote Sensing for Land and Resources, 2019, 31(3):1-9.doi: 10.6046/gtzyyg.2019.03.20.
doi: 10.6046/gtzyyg.2019.03.20
[26] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5):591-595.
[26] Xu H Q. A study on information extracttion of water body with the modified normalized difference water index(MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5):591-595.
[27] 孙孟昊, 蔡玉林, 顾晓鹤, 等. 基于潮汐规律修正的海岸线遥感监测[J]. 遥感信息, 2019, 34(6):105-112.
[27] Sun M H, Cai Y L, Gu X H, et al. Coastline remote sensing monitoring based on tidal level correction[J]. Remote Sensing Information, 2019, 34(6):105-112.
[28] 张旭凯, 张霞, 杨邦会, 等. 结合海岸类型和潮位校正的海岸线遥感提取[J]. 国土资源遥感, 2013, 25(4):91-97.doi: 10.6046/gtzyyg.2013.04.15.
doi: 10.6046/gtzyyg.2013.04.15
[28] Zhang X K, Zhang X, Yang B H, et al. Coastline extraction using remote sensing based on coastal type and tidal correction[J]. Remote Sensing for Land and Resources, 2013, 25(4):91-97.doi: 10.6046/gtzyyg.2013.04.15.
doi: 10.6046/gtzyyg.2013.04.15
[29] 马小峰, 赵冬至, 张丰收, 等. 海岸线卫星遥感提取方法研究进展[J]. 遥感技术与应用, 2007(4):575-580.
[29] Ma X F, Zhao D Z, Zhang F S, et al. An overview of means of withdrawing coastline by remote sensing[J]. Remote Sensing Technology and Application, 2007,(4):575-580.
[30] Wu K F. Evaluation of Yellow River delta coastline based on remote sensing from 1976 to 2014,China[J]. Chinese Geographical Science, 2019, 29(2):3-13.
[31] 李丹, 梅晓丹, 赵鹤, 等. GF-1与Landsat-8影像土地利用遥感解译对比分析[J]. 测绘工程, 2018, 27(10):42-45.
[31] Li D, Mei X D, Zhao H, et al. Comparative analysis of GF-1 and Landsat-8 image land use remote sensing interpretation[J]. Engineering of Surveying and Mapping, 2018, 27(10):42-45.
[32] 侯婉, 侯西勇. 考虑湿地精细分类的全球海岸带土地利用/覆盖遥感分类系统[J]. 热带地理, 2018, 38(6):866-873.
[32] Hou W, Hou X Y. Remote sensing classification system of land use and land cover for global coastal zone considering fine classification of wetland[J]. Tropical Geography, 2018, 38(6):866-873.
[33] 杨小艳, 刘文璐, 李龙, 等. 面向对象的沿海地区土地利用/覆被信息提取研究[J]. 测绘通报, 2019(6):89-91.
[33] Yang X Y, Liu W L, Li L, et al. Object-oriented land use /cover classification in coastal area[J]. Bulletin of Surveying and Mapping, 2019(6):89-91.
[34] 孙子彪. 海洋潮汐的运动规律[J]. 地理教育, 2006,(6):13.
[34] Sun Z B. The motion of ocean tides[J]. Geography Education, 2006,(6):13.
[35] 马小峰. 海岸线卫星遥感提取方法研究[D]. 大连:大连海事大学, 2007.
[35] Ma X F. The means of with drawing coastline by remote sensing[D]. Dalian:Dalian Maritime University, 2007.
[36] 王李娟, 牛铮. 基于ETM遥感影像的海岸线提取与验证研究[J]. 遥感技术与应用. 2010, 25(4):235-238.
[36] Wang L J, Niu Z. The study of coastline extraction and validation using ETM remote sensing image[J]. Remote Sensing Technology and Application, 2010, 25(4):235-238.
[37] 白珏莹, 徐威杰, 管明雷, 等. Landsat影像海岸带土地利用动态监测方法研究[J]. 测绘通报, 2016, 2(1):84-87.
[37] Bai Y Y, Xu W J, Guan M L, et al. Study on landsat images land use dynamic monitoring methods of coastal zone[J]. Bulletin of Surveying and Mapping, 2016, 2(1):84-87.
[38] 马振刚, 李黎黎, 许学工, 等. 环渤海海岸带土地利用变化格局研究[J]. 海洋开发与管理, 2019, 1(1):38-43.
[38] Ma Z G, Li L L, Xu X G, et al. The change pattern of land use in the coastal zone of Bohai Ring[J]. Ocean Development and Management, 2019, 1(1):38-43.
[39] 何冬晓, 马克波, 李文蕾, 等. 日照北部滨海湿地资源现状与时空演变[J]. 海洋湖沼通报, 2019(5):96-102.
[39] He D X, Ma K B, Li W L, et al, Current status and spatial and temporal evolution of coastal wetland resources of northern Rizhao[J]. Transaction of Oceanology and Limnology, 2019(5):96-102.
[40] 梁其东, 迟明春, 刘青, 等. 日照市付疃河流域治理的经验与做法[J]. 水利科技与经济, 2007, 13(2):918-919.
[40] Liang Q D, Chi M C, Liu Q, et al. Water conservancy science and technology and economy[J]. Shuili Keji Yu Jingji, 2007, 13(2):918-919.
[41] 崔承琦. 石臼湾及附近海岸地貌特征[J]. 山东海洋学院学报, 1983, 13(2):67-80.
[41] Cui C Q. Shijiu Bay and nearby coastal geomorphologic features[J]. Journal of Shandong College of Oceanology, 1983, 13(2):67-80.
[42] 赵庆英, 王小波, 陈荣华, 等. 绣针河口附近海岸线变迁特征[J]. 海洋学研究, 2008, 26(2):41-46.
[42] Zhao Q Y, Wang X B, Chen R H, et al. The characteristics of modern coast erosion-accretion change near the Xiuzhenhe River Estuary[J]. Journal of Marine Sciences, 2008, 26(2):41-46.
[43] 陈敬冉, 林振宏. 鲁南近浅海沉积物样品的因子分析及其地质意义[J]. 青岛海洋大学学报, 1988, 18(1):70-81.
[43] Chen J R, Lin Z H. Factor analysis and its geological significance in the analysis of sediment samples from nearshore and shallow waters off southern Shandong peninsula[J]. Journal of Ocean University of Qingdao, 1988, 18(1):70-81.
[1] PARIHA Helili, ZAN Mei. Spatio-temporal changes and influencing factors of ecological environments in oasis cities of arid regions[J]. Remote Sensing for Natural Resources, 2023, 35(3): 201-211.
[2] WANG Jiapeng, XU Jianguo, SHEN Jiaxiao, ZHANG Dengrong. Evaluating the remediation effect of heavy metal pollution in the Dexing copper mine based on hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(3): 284-291.
[3] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[4] WANG Jing, WANG Jia, XU Jiangqi, HUANG Shaodong, LIU Dongyun. Exploring ecological environment quality of typical coastal cities based on an improved remote sensing ecological index: A case study of Zhanjiang City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 43-52.
[5] YAN Bokun, GAN Fuping, YIN Ping, GE Xiaoli, GUO Yi, BAI Juan. Remote sensing observations of tidal flats, shorelines, and aquacultural water bodies along coastal zones in China mainland during 1989—2021[J]. Remote Sensing for Natural Resources, 2023, 35(3): 53-63.
[6] LI Zhixin, WANG Mengfei, JIA Weijie, JI Song, WANG Yufei. A method for identifying the number of building floors based on shadow information[J]. Remote Sensing for Natural Resources, 2023, 35(3): 97-106.
[7] WANG Zhenhua, TAN Zhilian, LI Jing, CHANG Yingli. Re-YOLOX: A YOLOX model for identifying nearshore monitoring targets improved based on the Resizer model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 10-16.
[8] ZHONG Le, ZENG Yan, QIU Xinfa, SHI Guoping. Suitability regionalization of Myrica rubra planting in Zhejiang Province[J]. Remote Sensing for Natural Resources, 2023, 35(2): 236-244.
[9] ZHU Boqin, YAN Zhaojin, XIE Jing, LIU Hong, SONG Xiaoqing, XIANG Xiqiong. Key technology for selecting depressions as sites of FAST-type radio telescopes[J]. Remote Sensing for Natural Resources, 2023, 35(2): 80-88.
[10] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[11] ZHENG Zongsheng, LIU Haixia, WANG Zhenhua, LU Peng, SHEN Xukun, TANG Pengfei. Improved 3D-CNN-based method for surface feature classification using hyperspectral images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 105-111.
[12] LYU Yongqiang, YU Xinwei, YANG Shuo, ZHENG Xinqi. Identification of the polycentric urban structure based on multi-source geographic big data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 132-139.
[13] ZHANG Guojian, LIU Shengzhen, SUN Yingjun, YU Kaijie, LIU Lina. Hyperspectral anomaly detection based on the weakly supervised robust autoencoder[J]. Remote Sensing for Natural Resources, 2023, 35(2): 167-175.
[14] HUANG Xiaoyu, WANG Xuemei, KAWUQIATI Baishan. Inversion of soil salinity of an oasis in an arid area based on Landsat8 OLI images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 189-197.
[15] ZHANG Zhenqi, CAI Huiwen, ZHANG Pingping, WANG Zelin, LI Tingting. A GEE-based study on the temporal and spatial variations in the carbon source/sink function of vegetation in the Three-River Headwaters region[J]. Remote Sensing for Natural Resources, 2023, 35(1): 231-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech