Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (2) : 33-39     DOI: 10.6046/gtzyyg.2020299
|
Hyperspectral estimation of black soil organic matter content based on wavelet transform and successive projections algorithm
XIAO Yan1(), XIN Hongbo1, WANG Bin2, CUI Li1, JIANG Qigang3
1. College of Exploration and Surveying Engineering, Changchun Insititute of Technology, Changchun 130012, China
2. Changchun Institute of Surveying and Mapping, Changchun 130021, China
3. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China
Download: PDF(2686 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Black soil is a valuable land resource, and the content of organic matter is an important index reflecting soil fertility, state and degradation degree. In order to estimate black soil organic matter content more accurately, this paper proposes a hyperspectral estimation method based on wavelet transform and successive projections algorithm. In this paper,the soil samples collected in the typical black soil region were used as the research object,and the Vis-NIR spectral data of the soil obtained from analytical spectral deviees (ASD) spectrometer and the organic matter content through chemical analysis were used as the data sources.Firstly, wavelet transform was used to extract the wavelet coefficients of 1 to 7 levels, and then successive projections algorithm was used to select the variables from soil original spectrum and the wavelet coefficients of 1 to 7 levels respectively. Finally, based on the soil original spectrum, the wavelet coefficients of 1 to 7 levels and the selected variables based on successive projections algorithm respectively, partial least squares and support vector machine were used to build the estimation models. The results show that, by using wavelet transform and successive projections algorithm, not only the number of variables is reduced greatly, but also the accuracies of the models are improved. When using partial least squares method,R2 increases from 0.79 of the soil original spectrum to 0.93 of the wavelet coefficient of the sixth level, and RMSE decreases from 6.06 g·kg-1 to 3.48 g·kg-1. When support vector machine method is used, R2 increases from 0.75 of the soil original spectrum to 0.91 of the wavelet coefficient of the third level, and RMSE decreases from 7.46 g·kg-1 to 4.12 g·kg-1. The results indicate that the proposed method can be effectively used for the hyperspectral estimation of black soil organic matter content.

Keywords organic matter      hyperspectral      wavelet transform      successive projections algorithm     
ZTFLH:  TP79  
Issue Date: 21 July 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yan XIAO
Hongbo XIN
Bin WANG
Li CUI
Qigang JIANG
Cite this article:   
Yan XIAO,Hongbo XIN,Bin WANG, et al. Hyperspectral estimation of black soil organic matter content based on wavelet transform and successive projections algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(2): 33-39.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020299     OR     https://www.gtzyyg.com/EN/Y2021/V33/I2/33
Fig.1  Distribution map of samples
类别 数量/个 最大值/
(g·kg-1)
最小值/
(g·kg-1)
平均值/
(g·kg-1)
标准差/
(g·kg-1)
建模样本 46 71.94 19.03 46.41 13.88
验证样本 15 66.78 20.72 45.41 13.38
Tab.1  Descriptive statistics of soil organic matter content
Fig.2  Distribution of the variables selected by successive projections algorithm
级别 PLS SVM 变量数
量/个
R2 RMSE/
(g·kg-1)
R2 RMSE/
(g·kg-1)
土壤全谱 0.79 6.06 0.75 7.46 2 051
第1层 0.77 6.37 0.73 7.37 1 028
第2层 0.73 7.01 0.73 7.20 516
第3层 0.73 6.96 0.74 7.12 260
第4层 0.86 5.08 0.84 5.50 132
第5层 0.88 4.56 0.87 4.96 68
第6层 0.86 5.02 0.79 6.37 36
第7层 0.72 7.12 0.72 7.18 20
Tab.2  Evaluation results of the estimation models of soil original spectrum and the wavelet coefficients of 1 to 7 levels
级别 PLS SVM 变量数
量/个
R2 RMSE/
(g·kg-1)
R2 RMSE/
(g·kg-1)
土壤全谱 0.77 6.38 0.85 5.80 18
第1层 0.33 10.93 0.77 6.51 26
第2层 0.86 4.94 0.79 6.46 33
第3层 0.77 6.41 0.91 4.12 18
第4层 0.91 4.00 0.87 4.96 14
第5层 0.92 3.84 0.85 5.39 11
第6层 0.93 3.48 0.80 6.18 11
第7层 0.82 5.70 0.72 7.15 9
Tab.3  Evaluation results of the estimation models of the soil original spectrum and the wavelet coefficients of 1 to 7 levels screened by successive projections algorithm
Fig.3-1  Scatter diagram of measured and predicted values of black soil organic matter content
Fig.3-2  Scatter diagram of measured and predicted values of black soil organic matter content
[1] Rasmussen C, Heckman K, Wieder W R, et al. Beyond clay:Towards an improved set of variables for predicting soil organic matter content[J]. Biogeochemistry, 2018, 137(5):297-306.
doi: 10.1007/s10533-018-0424-3 url: https://doi.org/10.1007/s10533-018-0424-3
[2] 马玥, 姜琦刚, 孟治国, 等. 基于RF-GABPSO混合选择算法的黑土有机质含量估测研究[J]. 光谱学与光谱分析, 2018, 38(1):181-187.
[2] Ma Y, Jiang Q G, Meng Z G, et al. Black soil organic matter content estimation using hybrid selection method based on RF and GABPSO[J]. Spectroscopy and Spectral Analysis, 2018, 38(1):181-187.
[3] 谢文, 赵小敏, 郭熙, 等. 基于RBF组合模型的山地红壤有机质含量光谱估测[J]. 林业科学, 2018, 54(6):16-23.
[3] Xie W, Zhao X M, Guo X, et al. Spectrum based estimation of the content of soil organic matters in mountain red soil using RBF combination model[J]. Scientia Silvae Sinicae, 2018, 54(6):16-23.
[4] 陈红艳, 赵庚星, 李希灿, 等. 基于DWT-GA-PLS的土壤碱解氮含量高光谱估测方法[J]. 应用生态学报, 2013, 24(11):3185-3191.
[4] Chen H Y, Zhao G X, Li X C, et al. Hyper spectral estimation method for soil alkali hydrolysable nitrogen content based on discrete wavelet transform and genetic algorithm in combining with partial least squares[J]. Chinese Journal of Applied Ecology, 2013, 24(11):3185-3191.
[5] 王延仓, 张兰, 王欢, 等. 连续小波变换定量反演土壤有机质含量[J]. 光谱学与光谱分析, 2018, 38(11):207-213.
[5] Wang Y C, Zhang L, Wang H, et al. Quantitative inversion of soil organic matter content based on continuous wavelet transform[J]. Spectroscopy and Spectral Analysis, 2018, 38(11):207-213.
[6] 王延仓, 杨贵军, 朱金山, 等. 基于小波变换与偏最小二乘耦合模型估测北方潮土有机质含量[J]. 光谱学与光谱分析, 2014, 34(7):1922-1926.
[6] Wang Y C, Yang G J, Zhu J S, et al. Estimation of organic matter content of north fluvo-aquic soil based on the coupling model of wavelet transform and partial least squares[J]. Spectroscopy and Spectral Analysis, 2014, 34(7):1922-1926.
[7] 李旭青, 李龙, 庄连英, 等. 基于小波变换和BP神经网络的水稻冠层重金属含量反演[J]. 农业机械学报, 2019, 50(6):226-232.
[7] Li X Q, Li L, Zhuang L Y, et al. Inversion of heavy metal content in rice canopy based on wavelet transform and BP neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(6):226-232.
[8] 吴迪, 吴洪喜, 蔡景波, 等. 基于无信息变量消除法和连续投影算法的可见-近红外光谱技术白虾种分类方法研究[J]. 红外与毫米波学报, 2009, 28(6):423-427.
[8] Wu D, Wu H X, Cai J B, et al. Classifying the species of exopalaemon by using visible and near infrared spectra with uninformative variable elimination and successive projections algorithm[J]. Journal of Infrared and Millimeter Waves, 2009, 28(6):423-427.
[9] 章海亮, 罗微, 刘雪梅, 等. 应用遗传算法结合连续投影算法近红外光谱检测土壤有机质研究[J]. 光谱学与光谱分析, 2017, 37(2):584-587.
[9] Zhang H L, Luo W, Liu X M, et al. Measurement of soil organic matter with near infrared spectroscopy combined with genetic algorithm and successive projection algorithm[J]. Spectroscopy and Spectral Analysis, 2017, 37(2):584-587.
[10] Peng X, Shi T, Song A, et al. Estimating soil organic carbon using VIS/NIR spectroscopy with SVMR and SPA Methods[J]. Remote Sensing, 2014, 6(4):2699-2717.
doi: 10.3390/rs6042699 url: http://www.mdpi.com/2072-4292/6/4/2699
[11] 印影. 黑土有机质含量的高光谱估测模型研究[D]. 长春:吉林大学, 2015.
[11] Yin Y. Study on hyper-spectral models for predicting black soil organic matter content[D]. Changchun:Jilin University, 2015.
[12] Sharma M, Pachori R B. A novel approach to detect epileptic seizures using a combination of tunable-Q wavelet transform and fractal dimension[J]. Journal of Mechanics in Medicine and Biology, 2017, 17(4):1740003.
doi: 10.1142/S0219519417400036 url: https://www.worldscientific.com/doi/abs/10.1142/S0219519417400036
[13] Zhao R, Biswas A, Zhou Y, et al. Identifying localized and scale-specific multivariate controls of soil organic matter variations using multiple wavelet coherence[J]. Science of the Total Environment, 2018, 643:548-558.
doi: 10.1016/j.scitotenv.2018.06.210 url: https://linkinghub.elsevier.com/retrieve/pii/S0048969718322873
[14] 陈红艳, 赵庚星, 李希灿, 等. 小波分析用于土壤速效钾含量高光谱估测研究[J]. 中国农业科学, 2012, 45(7):1425-1431.
[14] Chen H Y, Zhao G X, Li X C, et al. Application of wavelet analysis for estimation of soil available potassium content with hyperspectral reflectance[J]. Scientia Agricultura Sinica, 2012, 45(7):1425-1431.
[15] 栾福明, 熊黑钢, 王芳, 等. 基于小波分析的土壤碱解氮含量高光谱反演[J]. 光谱学与光谱分析, 2013, 33(10):2828-2832.
[15] Luan F M, Xiong H G, Wang F, et al. The inversion of soil alkaline hydrolysis nutrient content with hyperspectral reflectance based on wavelet analysis[J]. Spectroscopy and Spectral Analysis, 2013, 33(10):2828-2832.
[16] 高洪智, 卢启鹏, 丁海泉, 等. 基于连续投影算法的土壤总氮近红外特征波长的选取[J]. 光谱学与光谱分析, 2009, 29(11):2951-2954.
[16] Gao H Z, Lu Q P, Ding H Q, et al. Choice of characteristic near-infrared wavelengths for soil total nitrogen based on successive projection algorithm[J]. Spectroscopy and Spectral Analysis, 2009, 29(11):2951-2954.
[17] 沈掌泉, 卢必慧, 单英杰, 等. 基于变量选择的偏最小二乘回归法和田间行走式近红外光谱进行土壤碳含量测定研究[J]. 光谱学与光谱分析, 2013, 33(7):1775-1780.
[17] Shen Z Q, Lu B H, Shan Y J, et al. Study on soil carbon estimation by on-the-go near-infrared spectra and partial least squares regression with variable selection[J]. Spectroscopy and Spectral Analysis, 2013, 33(7):1775-1780.
[18] Xiao Y, Jiang Q, Wang B, et al. Object-oriented fusion of RADARSAT-2 polarimetric synthetic aperture Radar and HJ-1A multispectral data for land-cover classification[J]. Journal of Applied Remote Sensing, 2016, 10(2):026021.
doi: 10.1117/1.JRS.10.026021 url: http://remotesensing.spiedigitallibrary.org/article.aspx?doi=10.1117/1.JRS.10.026021
[1] ZHENG Zongsheng, LIU Haixia, WANG Zhenhua, LU Peng, SHEN Xukun, TANG Pengfei. Improved 3D-CNN-based method for surface feature classification using hyperspectral images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 105-111.
[2] ZHANG Guojian, LIU Shengzhen, SUN Yingjun, YU Kaijie, LIU Lina. Hyperspectral anomaly detection based on the weakly supervised robust autoencoder[J]. Remote Sensing for Natural Resources, 2023, 35(2): 167-175.
[3] KONG Zhuo, YANG Haitao, ZHENG Fengjie, LI Yang, QI Ji, ZHU Qinyu, YANG Zhonglin. Research advances in atmospheric correction of hyperspectral remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 1-10.
[4] ZHANG Pengqiang, GAO Kuiliang, LIU Bing, TAN Xiong. Classification of hyperspectral images based on deep Transformer network combined with spatial-spectral information[J]. Remote Sensing for Natural Resources, 2022, 34(3): 27-32.
[5] SUN Xiao, XU Linlin, WANG Xiaoyang, TIAN Ye, WANG Wei, ZHANG Zhongyue. Mineral identification from hyperspectral images based on the optimized K-P-Means unmixing method[J]. Remote Sensing for Natural Resources, 2022, 34(3): 43-49.
[6] YAN Hongbo, WEI Wanqiu, LU Xianjian, YANG Zhigao, LI Zhenbao. A review of remote sensing inversion methods for estimating soil water content based on hyperspectral characteristics[J]. Remote Sensing for Natural Resources, 2022, 34(2): 1-9.
[7] SUN Xiao, PENG Junhuan, ZHAO Feng, WANG Xiaoyang, LYU Jie, ZHANG Dengfeng. Principal component selection method for hyperspectral remote sensing images based on spatial statistics[J]. Remote Sensing for Natural Resources, 2022, 34(2): 37-46.
[8] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[9] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[10] CHEN Jie, ZHANG Lifu, ZHANG Linshan, ZHANG Hongming, TONG Qingxi. Research progress on online monitoring technologies of water quality parameters based on ultraviolet-visible spectra[J]. Remote Sensing for Natural Resources, 2021, 33(4): 1-9.
[11] XIAO Yehui, SONG Nidi, MENG Panpan, WANG Peijun, FAN Shenglong. Prediction of lead content in soil based on model population analysis coupled with ELM algorithm[J]. Remote Sensing for Natural Resources, 2021, 33(4): 143-152.
[12] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[13] ZHOU Chaofan, GONG Huili, CHEN Beibei, LEI Kunchao, SHI Liyuan, ZHAO Yu. Prediction of land subsidence along Tianjin-Baoding high-speed railway using WT-RF method[J]. Remote Sensing for Natural Resources, 2021, 33(4): 34-42.
[14] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[15] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech