Please wait a minute...
 
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (3) : 173-183     DOI: 10.6046/zrzyyg.2020339
|
Surface albedos of different land use types in the Junggar Basin
DENG Xiaojin1(), JING Changqing1(), GUO Wenzhang1, Yan Yujiang2, CHEN Chen1
1. College of Grassland and Environment Sciences, Xinjiang Agricultural University, Key Laboratory of Grassland Resources and Ecology of Xinjiang, Urumqi 830052, China
2. School of Economics and Busines, Xinjiang Agricultural University, Urumqi 830052, China
Download: PDF(7816 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This study focuses on the surface albedo characteristics of different land use types in the Junggar Basin, aiming to provide a scientific basis for the revealment of the biogeophysical mechanisms of different land use types on a regional scale. Based on the surface albedo data during 2000-2018 obtained through remote sensing inversion and the land use data of 2000, 2010, and 2018, this study analyzed the temporal and spatial variation characteristics and interannual variation trend of the surface albedos for short wave (0.3~2.5 μm), near infrared (0.76~3.0 μm) and visible light (0.35~0.76 μm) of different land use types in the Junggar Basin. It will provide a scientific basis for the understanding of the albedo characteristics of different land use types and reveal the impacts of cover change on climate change on a regional scale. The results are as follows. The surface albedos of different land use types have distinctly different characteristics for different wavebands. The surface albedos of the first- and second-level land use types are in the order of near infrared > short wave > visible light, except for the second-level land use types of lakes and reservoirs. For the interannual change trend, the surface albedos of different land use types for the three bands during 2010—2018 are slightly higher than that during 2000—2010. Moreover, all the first-level land use types in the short waveband during 2010—2018 passed the significance test of p=0.05. The interannual variations of surface albedos of land use types in the Junggar Basin over the past 18 years showed a weak growth trend in terms of the variation rate and were slight and stable on the whole in terms of the rate variation. The results of this study will lay a foundation for the research into the surface spectral radiation and energy balance of the study area.

Keywords Junggar Basin      surface albedo      land use types      visible light      near-infrared      shortwave     
ZTFLH:  TP79  
Corresponding Authors: JING Changqing     E-mail: 576762545@qq.com;jingchangqing@126.com
Issue Date: 24 September 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaojin DENG
Changqing JING
Wenzhang GUO
Yujiang Yan
Chen CHEN
Cite this article:   
Xiaojin DENG,Changqing JING,Wenzhang GUO, et al. Surface albedos of different land use types in the Junggar Basin[J]. Remote Sensing for Natural Resources, 2021, 33(3): 173-183.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2020339     OR     https://www.gtzyyg.com/EN/Y2021/V33/I3/173
Fig.1  Location of Junggar Basin
类型 面积 面积变化
2000年 2010年 2018年 2000—
2010年
2010—
2018年
耕地 17 622.59 20 726.67 28 393.34 3 104.08 7 666.67
林地 3 466.58 3 391.43 964.55 -75.15 -2 426.89
草地 65 685.41 64 061.11 68 104.03 -1 624.30 4 042.91
水域 2 813.37 2 992.75 3 312.36 179.38 319.62
城乡工矿居民用地 1 389.10 1 610.78 2 760.70 221.68 1 149.92
未利用土地 130 308.95 128 502.91 117 739.40 -1 806.04 -10 763.52
Tab.1  Area and net area change of 6 land cover types during 2000—2018(km2)
Fig.2  Distribution map of land types in first-class land use unchanged area of Junggar Basin
Fig.3  Distribution of land types in second-class land use unchanged area of Junggar basin
Fig.4  Spatial distributions of annual averaged surface albedo from 2000 to 2010
Fig.5  Spatial distributions of annual averaged surface albedo from 2010 to 2018
Fig.6  Statistical values of surface albedo for each land use type
一级类型(编号) 二级类型(编号) 可见光斜率 近红外斜率 短波斜率
一级类 二级类 一级类 二级类 一级类 二级类
耕地(1) 水田(11) -0.001 4 0.001 18 0.000 1 0.001 53 -0.000 9 0.001 09
旱田(12) -0.001 41 0.000 05 -0.000 88
林地(2) 有林地(21) -0.000 5 -0.000 03 0.000 4 0.000 43 -0.000 3 -0.003 81
灌木林(22) -0.000 80 0.000 22 -0.000 51
疏林地(23) -0.000 59 0.000 63 -0.000 33
其他林地(24) -0.000 82 0.000 13 -0.000 71
草地(3) 高覆盖(31) -0.000 5 -0.000 88 -0.000 1 -0.000 14 -0.000 5 -0.000 77
中覆盖(32) -0.001 03 -0.000 49 -0.001 04
低覆盖(33) -0.000 28 0.000 01 -0.000 30
水域(4) 河渠(41) -0.001 4 -0.000 55 -0.001 8*① -0.000 51 -0.002 5* -0.000 95
湖泊(42) -0.001 62 -0.002 63* -0.003 28*
水库坑塘(43) -0.000 97 -0.000 67 -0.001 37
滩地(46) -0.001 39 0.000 46 -0.000 73
城乡、工矿、居民用地(5) 城镇用地(51) -0.001 4 -0.000 95 -0.000 5 -0.000 61* -0.001 2 -0.001 12
农村居民点(52) -0.001 21 -0.000 08 -0.000 85
其他建设用地(53) -0.003 59 -0.001 52 -0.002 81*
未利用土地(6) 沙地(61) -0.001 0 -0.000 94 -0.000 2 -0.000 53 -0.000 8 -0.000 93
戈壁(62) -0.000 87 -0.000 07 -0.000 69
盐碱地(63) -0.003 31 -0.000 50 -0.002 15*
沼泽地(64) -0.000 57 0.000 51 -0.000 47
裸土地(65) -0.000 12 -0.000 11 -0.000 07
裸岩石质地(66) -0.000 33 -0.000 10 -0.000 28
Tab.2  Annual variation trend value of surface albedo of each land use type from 2000 to 2010
一级类型(编号) 二级类型(编号) 可见光斜率 近红外斜率 短波斜率
一级类 二级类 一级类 二级类 一级类 二级类
耕地(1) 水田(11) -0.003 2 -0.004 18 -0.001 3 -0.001 94 -0.002 2*① -0.003 05
旱田(12) -0.003 23 -0.001 29 -0.002 22
林地(2) 有林地(21) -0.004 7 -0.005 23 -0.002 6 -0.002 92 -0.003 7* -0.004 09
灌木林(22) -0.002 44 -0.001 69 -0.002 04
疏林地(23) -0.003 31 -0.001 72 -0.002 50
其他林地(24) -0.005 88 -0.003 09 -0.004 41
草地(3) 高覆盖(31) -0.003 9 -0.005 29 -0.002 3 -0.002 80 -0.003 1* -0.004 05
中覆盖(32) -0.002 68 -0.001 48 -0.002 06
低覆盖(33) -0.004 27 -0.002 47 -0.003 36
水域(4) 河渠(41) -0.001 6 -0.006 79 -0.008 4* -0.004 35* -0.004 7* -0.005 60
湖泊(42) -0.001 44 -0.009 14* -0.004 97
水库坑塘(43) -0.002 98 -0.003 05 -0.003 18*
滩地(46) -0.003 19* -0.002 17 -0.002 65
城乡、工矿、居民用地(5) 城镇用地(51) -0.002 0 -0.002 06 -0.001 1 -0.000 97 -0.001 5* -0.001 45
农村居民点(52) -0.003 58 -0.002 14 -0.002 82
其他建设用地(53) 0.000 70 -0.000 53 0.000 18
未利用土地(6) 沙地(61) -0.003 6 -0.004 62* -0.002 1 -0.002 37 -0.002 9* -0.003 53
戈壁(62) -0.003 01 -0.002 03 -0.002 50
盐碱地(63) -0.004 21 -0.006 03 -0.005 12
沼泽地(64) -0.003 10 -0.003 22 -0.003 20
裸土地(65) -0.004 16 -0.002 52 -0.003 34
裸岩石质地(66) -0.002 43 -0.001 43 -0.001 91
Tab.3  Annual variation trend value of surface albedo of each land use type from 2010 to 2018
Fig.7  Annual variation trend of surface albedo in different bands for each type of land use
[1] Lawler J J, Lewis J D, Nelson E, et al. Projected land-use change impacts on ecosystem services in the United States[J]. Proceedings of the National Academy of Sciences, 2014, 111(20):7492-7497.
doi: 10.1073/pnas.1405557111 url: http://www.pnas.org/cgi/doi/10.1073/pnas.1405557111
[2] 刘纪远, 宁佳, 匡文慧. 2010—2015年中国土地利用变化的时空格局与新特征[J]. 地理学报, 2018, 73(5):789-802.
doi: 10.11821/dlxb201805001
[2] Liu J Y, Ning J, Kuang W H. Temporal and spatial patterns and new features of land use change in China from 2010 to 2015[J]. Journal of Geographical Sciences, 2018, 73(5):789-802.
[3] Betts R A, Falloon P, Goldewijk K K, et al. Biogeophysical effects of land use on climate:Model simulations of radiative forcing and largescale temperature change[J]. Agricul-tural and Forest Meteorology, 2007, 142(2-4):216-233.
[4] Prestele R, Arneth A, Bondeau A, et al. Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assess-ments[J]. Earth System Dynamics, 2017, 8(2):1-28.
doi: 10.5194/esd-8-1-2017 url: https://esd.copernicus.org/articles/8/1/2017/
[5] 翟俊, 刘荣高, 刘纪远, 等. 1990—2010年中国土地覆被变化引起反照率改变的辐射强迫[J]. 地理学报, 2013, 68(7):875-885.
[5] Zhai J, Liu R G, Liu J Y, et al. Radiative forcing over China due to albedo change caused by land cover change during 1990—2010[J]. Acta Geographica Sinica, 2013, 68(7):875-885.
[6] Steffen W, Rockström J, Richardson K, et al. Trajectories of the Earth system in the anthropocene[J]. Proceedings of the National Academy of Sciences, 2018, 115(33):8252-8259.
doi: 10.1073/pnas.1810141115 url: http://www.pnas.org/lookup/doi/10.1073/pnas.1810141115
[7] Betts R A. Biogeophysical impacts of land use on present-day climate:Near-surface temperature change and radiative forcing[J]. Atmospheric Science Letters, 2000, 2(1-4):39-51.
doi: 10.1006/asle.2001.0023 url: http://doi.wiley.com/10.1006/asle.2001.0023
[8] Hansen J, Sato M, Ruedy R. Radiative forcing and climate response[J]. Journal of Geophysical Research, 1997, 102(1997):6831-6864.
doi: 10.1029/96JD03436 url: http://doi.wiley.com/10.1029/96JD03436
[9] Brovkin V, Raddatz T, Reick C H, et al. Global biogeophysical interactions between forest and climate[J]. Geophysical Research Letters, 2009, 36(7):251-254.
[10] Barnes C A, Roy D P. Radiative forcing over the conterminous united states due to contemporary land cover land use albedo change[J]. Geophysical Research Letters, 2008, 35(9):1-6.
[11] Myhre G, Myhre A. Uncertainties in radiative forcing due to surface albedo changes caused by land-use changes[J]. Journal of Climate, 2003, 16(10):1511-1524.
doi: 10.1175/1520-0442(2003)016<1511:UIRFDT>2.0.CO;2 url: http://journals.ametsoc.org/doi/10.1175/1520-0442(2003)016<1511:UIRFDT>2.0.CO;2
[12] Myhre G, Kvalevag M M, Schaaf C B. Radiative forcing due to anthropogenic vegetation change based on modis surface albedo data[J]. Geophysical Research Letters, 2005, 32(21):1-4.
[13] Davin E L, Noblet-Ducoudré N, Friedlingstein P. Impact of land cover change on surface climate:Relevance of the radiative forcing concept[J]. Geophysical Research Letters, 2007, 34(13):1-5.
[14] 李振朝, 韦志刚, 文军, 等. 黄土高原典型塬区冬小麦地表辐射平衡各分量特征分析[J]. 太阳能学报, 2009, 30(1):12-18.
[14] Li Z C, Wei Z G, Wen J, et al. Analysis of land-surface radiation characteristic in winter-wheat field over the loess plateau mesa in China[J]. Acta Energiae Solaris Sinica, 2009, 30(1):12-18.
[15] 郑志远, 韦志刚, 李振朝, 等. 敦煌荒漠戈壁地区裸土地表反照率参数化研究[J]. 大气科学, 2014, 38(2):297-308.
[15] Zheng Z Y, Wei Z G, Li Z C, et al. Study of parameterization of surface albedo of bare soilover the Gobi desert in the Dunhuang region[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(2):297-308.
[16] 杨佳希, 李振朝, 韦志刚, 等. 稀疏植被地表分光辐射及其反照率特征研究[J]. 太阳能学报, 2017, 38(3):852-859.
[16] Yang J X, Li Z C, Wei Z G, et al. Characteristics of solar spectral radiation and corresponding albedo in sparse vegetation region[J]. Acta Energiac Solaris Sinica, 2017, 38(3):852-859.
[17] 邹基玲, 季国良. 藏北高原太阳总辐射和地表反射率的分光辐射[J]. 太阳能学报, 1996, 17(12):113-117.
[17] Zou J L, Ji G L. The spectral characteristics of global radiation and surface albedo on Northern Tibetan plateau[J]. Acta Energiae Solaris Sinica, 1996, 17(12):113-117.
[18] Zheng Z Y, Dong W J, Li Z C, et al. Observational study of surface spectral radiation and corresponding albedo over Gobi,desert,and bare loess surfaces in northwestern China[J]. Journal of Geophysical Research:Atmospheres, 2015, 120(3):883-896.
doi: 10.1002/2014JD022516 url: http://doi.wiley.com/10.1002/2014JD022516
[19] 郑志远, 韦志刚, 李振朝, 等. 敦煌戈壁秋初太阳分光辐射及其反照率特征[J]. 太阳能学报, 2012, 33(11):1938-1942.
[19] Zheng Z Y, Wei Z G, Li Z C, et al. Characteristics of solar spectral radiation and albedo during early autumn in Dunhuangn Gobl[J]. Acta Energlae Solaris Sinica, 2012, 33(11):1938-1942.
[20] 刘亲亲, 崔耀平, 刘素洁, 等. 中国不同土地利用类型分光辐射地表反照率研究[J]. 遥感技术与应用, 2019, 34(1):46-56.
[20] Liu Q Q, Cui Y P, Liu S J, et al. Study on surface albedo of spectral radiation of different land use types in China[J]. Remote Sensing Technology and Application, 2019, 34(1):46-56.
[21] 许鹏, 新疆草地资源及其应用[M]. 乌鲁木齐: 新疆科技卫生出版社, 1993: 205.
[21] Xu P. Grassland resources and its application in Xinjiang[M]. Urumqi: Xinjiang Science and Technology Health Press, 1993: 205.
[22] Vermote E F, Kotchenova S Y. MOD09(surface reflectance) user’s guide[EB/OL].(2008-3)[2012-7]. http://modis-sr.ltdri.org.
url: http://modis-sr.ltdri.org
[23] Wang K, Liu J, Zhou X, et al. Validation of the MODIS global land surface albedo product using ground measurements in a semidesert region on the Tibetan Plateau[J]. Journal of Geophysical Research, 2004, 109(D5):1-9.
[24] Lucht W, Schaaf C B, Strahler A H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models[J]. IEEE Transactions on Geoscience & Remote Sensing, 2000, 38(2):977-997.
[25] Liang S L. Validating MODIS land surface reflectance and albedo products:Methods and preliminary results[J]. Remote Sensing of Environment, 2002, 83(1-2):149-162.
doi: 10.1016/S0034-4257(02)00092-5 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425702000925
[26] 王开存, 刘晶淼, 周秀骥, 等. 利用MODIS卫星资料反演中国地区睛空地表短波反照率及其特征分析[J]. 大气科学, 2004, 28(6):941-952.
[26] Wang K C, Liu J M, Zhou X J, et al. Retrieval of the surface albedo under clear sky over China and its characteristics analysis by using MODIS satellite date[J]. Chinese Journal of Atomospheric Sciences, 2004, 28(6):941-952.
[27] 陈爱军, 卞林根, 刘玉洁, 等. 应用MODIS数据反演青藏高原地区地表反照率[J]. 南京气象学院学报, 2009, 32(2):222-229.
[27] Chen A J, Bian L G, Liu Y J, et al. Using MODIS date to retrieve albedo over the Qinghai-Tibet plateau[J]. Tournal of Nanjing Insitute of Meteorology, 2009, 32(2):222-229.
[28] Liang S, Shuey, C J, Rass A L, et al. Narrowband to broadband conversions of land surface albedo:II[J]. Validation,Remote Sensing of Environment, 2003, 84(1),25-41.
[29] Lewis P, Barnsley M J. Influence of the sky radiance distribution on various formulations of the earth surface albedo[C]// Proceedings of the 6th International Symposium on Physical Measurements and Signatures in Remote Sensing.France:ISPRS, 1994,707-715.
[30] 徐新良, 庞治国, 于信芳, 等. 土地利用/覆被变化时空信息分析方法及应用[M]. 北京: 科学技术文献出版社, 2014:90-108.
[30] Xu X L, Pang Z G, Yu X F, et al. Spatial-temporal pattern analysis of land use/cover[M]. Beijing: Scientific and Technical Documentation Press, 2014:90-108.
[31] 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 1999,43-47.
[31] Wei F Y. Modern climate statistical diagnosis and prediction technology[M]. Beijing: Meteorological Press, 1999,43-47.
[32] 郑瑜晗, 黄麟, 翟俊. 陆地表层覆盖变化对地表反照率影响的四国对比[J]. 遥感学报2020, 24(7):917-932.
[32] Zheng Y H, Huang L, Zhai J. Impacts of land cover changes on surface albedo in China,the United States,India and Brazil[J]. Journal of Remote Sensing, 2020, 24(7):917-932.
[33] Cao M, Prince S D, Tao B, et al. Regional pattern and interannual variations in global terrestrial carbon uptake in response to changes in climate and Atomospheric CO2[J]. Telus, 2010, 57(3):2010-217.
[34] 唐希颖, 崔耀平, 李楠, 等. 2000—2015年北京市土地利用强度及其辐射反馈评估[J]. 遥感技术与应用, 2020, 35(3):587-595.
[34] Tang X Y, Cui Y P, Li N, et al. Land use intensity and radiation feedback in Beijing from 2000 to 2015[J]. Remote Sensing Technology and Application, 2020, 35(3):587-595.
[35] 樊杰. 中国主体功能区划方案[J]. 地理学报, 2015, 70(2):186-201.
doi: 10.11821/dlxb201502002
[35] Fan J. Draft of major function oriented zoning of China[J]. Acta Geographica Sinica, 2015, 70(2):186-201.
[36] 左洪超, 吕世华, 胡隐樵. 中国近50年气温及降水量的变化趋势分析[J]. 高原气象, 2004, 23(2):238-244.
[36] Zuo H C, Lyu S H, Hu Y Q. Variations trend of yearly mean air temperature and precipitation in China in the last 50 years[J]. Plateau Meteorology, 2004, 23(2):238-244.
[37] 杨续超, 张镱锂, 刘林山, 等. 中国地表气温变化对土地利用/覆被类型的敏感性[J]. 中国科学(D辑:地球科学), 2009, 39(5):638-646.
[37] Yang X C, Zhang Y L, Liu L S, et al. Sensitivity of surface air temperature change to land types in China[J]. Science in China Series D:Earth Sciences, 2009, 39(5):638-646.
[1] Xianlei FAN, Hongbo YAN, Ying QU. Comparison and validation of the methods for estimating surface albedo from HJ-1 A/B CCD data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 123-131.
[2] Bing YU, Jiyan WANG, Yong SU, Dongsheng XIAO, Fuzhen LIU. A pixel transform-based land cover change detection approach: A case study of Beijing City[J]. Remote Sensing for Land & Resources, 2018, 30(3): 60-67.
[3] WEN Lujun, PENG Wenfu, YANG Huarong, WANG Huaiying, DONG Lijun, SHANG Xue. An analysis of land surface temperature (LST) and its influencing factors in summer in western Sichuan Plateau: A case study of Xichang City[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 207-214.
[4] SUN Changkui, LIU Qiang, WEN Jianguang, LI Dan, YU Kun, ZHANG Zonggui. An algorithm for retrieving land surface albedo from HJ-1 CCD data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 58-63.
[5] ZENG Guang, GAO Huijun, ZHU Gang. Analysis of wetlands evolution process between Tarim Basin and Junggar Basin in the past 32 years[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 118-123.
[6] LIANG Wen-Guang, ZHAO Ying-Shi. A NEW METHOD OF SURFACE ALBEDO INVERSE MODEL BASED ON ENERGY TRANSMISSION[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(1): 53-56.
[7] Ma Xiangping, Xian Mailong, Lu Lushi, Sun Shunxin, Zhang Dunhu, Wang Hui . REMOTE SENSING MONITOR STUDY ON POLLUTED VEGETATION STATUS FROM ACID PRECIPITATION POLLUTION IN CHONGQING CITY[J]. REMOTE SENSING FOR LAND & RESOURCES, 1997, 9(4): 14-20.
[8] Fu Bihong, Ohnuma T., Hou Jianyong. ANALYSIS ON NEOTECTONIC MOVEMENT AND ITS RELATIONSHIP WITH OIL AND GAS ACCUMU- LATION IN SOUTHWESTERN MARGIN OF JUNGGAR BASIN USING TM IMAGES[J]. REMOTE SENSING FOR LAND & RESOURCES, 1997, 9(1): 7-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech