Please wait a minute...
 
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (3) : 1-10     DOI: 10.6046/zrzyyg.2020357
|
Assessment of the interpretation ability of domestic satellites in geological remote sensing
ZHENG Xiongwei1,2,3(), PENG Bei4, SHANG Kun5
1. China Aero Geophysical Survey & Remote Sensing Center for Natural Resources,Beijing 100083, China
2. Graduate School of Chinese Academy of Geological Sciences,Beijing 100037, China
3. School of Computer Science,China University of Geosciences(Wuhan),Wuhan 430074, China
4. Sichuan Geological Survey Institute, Chengdu 610036, China
5. Land Satellite Remote Sensing Application Center, Ministry of Natural Resources, Beijing 100048, China
Download: PDF(7027 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

With the substantial improvement in spatial resolution, spectral resolution, temporal resolution, and data coverage, domestic satellites have been widely used in natural resources supervision and geological surveys. Taking ZY-1 02C, GF-1, GF-2, and ZY-3 satellites as examples, this paper explores and studies their interpretation applications in basic geography, basic geology, land resources, mineral resources development, hydrogeology, engineering geology, and geological disasters. Furthermore, this paper compares, assesses, and summarizes the ability of the domestic satellites in the interpretation of geological survey elements. All these will provide guiding suggestions and scientific references for more extensive and in-depth applications of domestic satellites.

Keywords domestic satellite      geological remote sensing      interpretation ability     
ZTFLH:  TP79  
Issue Date: 24 September 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiongwei ZHENG
Bei PENG
Kun SHANG
Cite this article:   
Xiongwei ZHENG,Bei PENG,Kun SHANG. Assessment of the interpretation ability of domestic satellites in geological remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 1-10.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2020357     OR     https://www.gtzyyg.com/EN/Y2021/V33/I3/1
数据类型 地面分辨率/m 适用比例尺
02C 多光谱: 10
全色: 5
HR: 2.36
1:100 000
1:50 000
1:23 600
ZY3 多光谱: 5.8
全色: 2.1
1:58 000
1:21 000
GF1 多光谱: 8
全色: 2
1:80 000
1:20 000
GF2 多光谱: 4
全色: 1
1:40 000
1:10 000
Tab.1  Relationship between spatial resolution and mapping scale of domestic satellites
融合影
像类型
空间分
辨率/m
地面分
辨率/m
点状要
素解译
精度/m
线状要
素解译
精度/m
面状要
素解译
精度/m2
02C 2.36 6.68 6.68 2.23 401.01
ZY3 2.1 5.94 5.94 1.98 317.52
GF1 2 5.66 5.66 1.89 288
GF2 1 2.83 2.83 0.94 72
Tab.2  Relationship between image ground resolution and geological interpretation accuracy
要素 02C ZY3 GF1 GF2
国道省道
其他道路
分析 交通道路宽度>2.5 m,各卫星均能清楚识别交通道路形态、位置,02C对边界反映略差
居民聚集区
分析 居民地聚集区面积为60 775 m2,各卫星对此类面状居民地位置、边界、形态均能很好的解译,解译程度较高
独立居民地
分析 红色框面积64~90 m2,蓝色框面积102~199 m2,紫色框面积为290 m2,黑色框面积为420 m2。各卫星均能对此类面积分散居民地位置、边界、形态进行解译,据统计,GF2可识别的独立居民地面积为≥64 m2; GF1,ZY3可识别的独立居民地面积为≥290 m2; 02C对独立居民边界区分较难,可识别的独立居民地面积为≥420 m2
河流面
分析 河流宽度>17.9 m,各卫星均对河流位置、边界、形态进行解译,各卫星解译能力表现一致
河流线
分析 河流宽度>7 m,ZY3,GF1,GF2卫星均能识别水系位置、形态、边界; 02C对此类河流边界解译能力稍差
水库
分析 水库面积为920 001 m2,各卫星对此类水库位置、边界、形态均能很好的解译,表现形式面状
库塘
分析 区内库塘面积最小者475 m2,各卫星均分辨此类库塘位置、形态,02C对库塘边界的识别能力相对较差。各卫星均能满足1:5万解译要求
Tab.3  Comparison chart of basic geographic elements interpretation ability
解译要素 可解译程度 建议使用的数据 备注
居民地 GF1,ZY3,02C(更高精度要求下建议使用GF2) 自动提取
公路 GF1,ZY3,02C(更高精度要求下建议使用GF2) 人工提取
水系 GF1,ZY3,02C(更高精度要求下建议使用GF2) 人工提取
地形地貌 GF1和ZY3(对微地貌的调查建议使用GF2) 人工提取
Tab.4  Basic geographic elements interpretation ability
要素 02C ZY3 GF1 GF2
冲洪积
残坡积
断裂构造
分析 4颗国产卫星具有较高的空间分辨率,区内断裂构造线性分布明显,各卫星均能较好的反映解译构造的位置和走向,从解译能力上看,GF2卫星的解译能力相对较好,其他3颗星差
地层岩性
分析 地层岩性: 地层岩性的解译能力主要受制于影像解译标志建立的准确性、地表覆盖情况、地层岩体的出露大小、岩石类型等,从对比结果来看,GF2,GF1,ZY3在地层岩性的解译能力大致相当,02C由于缺少蓝光波段,影像分辨率较低,影像纹理较差,相对其他3颗卫星解译效果较差
Tab.5  Comparison chart of interpretation ability of basic geological elements
解译要素 可解译程度 建议使用
的数据
备注
活动断裂 中高 GF1,ZY3 目视解译结合现有资料
地层 GF1,ZY3 目视解译结合现有资料
第四系 GF1,ZY3 目视解译结合现有资料
Tab.6  Basic geological interpretation ability table
要素 02C ZY3 GF1 GF2
有林地
园地
分析 02C可对林地一级类布区进行识别,林地二级类的边界难以区分; GF1,ZY3能划分林地二级类的边界,对二级类属性区分较难,GF2对部分林地二级类可以直接判读其性质。GF1,ZY3,GF2均能识别面积> 300 m2 的独立林地
水田
旱地
分析 ZY3,GF1,GF2可对耕地及其二级类进行很好的解译,02C可较好地对耕地一级类进行解译,但对耕地二级类的边界划分较难, GF1,ZY3,GF2均能识别面积> 300 m2 的耕地,3颗卫星对耕地二级类的边界解译能力均较强
Tab.7  Comparison chart of interpretation ability of land resource elements
解译要素 可解译程度 建议使用的数据 备注
草地 较高 GF2,GF1,ZY3 目视解译(二级类需实地查证)
耕地 较高 GF2,GF1,ZY3 目视解译
园地 较高 GF2,GF1,ZY3 目视解译(二级类需实地查证)
林地 较高 GF2,GF1,ZY3 目视解译(二级类需实地查证)
建设用地 较高 GF2,GF1,ZY3 目视解译
其他土地 较高 GF2,GF1,ZY3 目视解译(二级类需实地查证)
Tab.8  Interpretation ability table of land resource elements
要素 02C ZY3 GF1 GF2
开采面与中转场
分析 开采面面积11 450 m2,ZY3,GF1,02C卫星均能识别矿山分布区的位置、范围; GF1,ZY3对开采面与中转场边界划分可能存在误差,02C数据对开采面与中转场边界划分较困难
停采面
分析 图中停采面积为5 675 m2,ZY3,GF1,GF2,02C卫星均能识别停采面的位置、范围及边界,但02C由于缺少波段,停采面图斑与周边翻耕后的地物色调较一致,易造成漏解译
矿山复绿区
分析 GF1,ZY3,GF2数据均能很好的对复绿区位置、边界、范围进行解译,02C由于缺少波段,矿山开采区经自然复绿后与周边林地色调较一致,易造成解译过程中的漏解
Tab.9  Comparison of remote sensing interpretation ability of mineral resources
解译要素 可解译程度 建议使用的数据 备注
开采面 较高 GF2,GF1,ZY3 目视解译,多期影像对比
中转场 较高 GF2,GF1,ZY3
矿山建筑 较高 GF2,GF1,ZY3
复绿区 较高 GF2,GF1,ZY3
采硐口 较高 GF2,GF1,ZY3
环境污染区 较高 GF2,GF1,ZY3
Tab.10  Interpretation ability table of mineral resources development elements
解译要素 可解译程度 建议使用
的数据
备注
河流 GF1,ZY3 自动提取
湖泊 GF1,ZY3 自动提取
坑塘、水库 GF1,ZY3 自动提取
地下含水层 GF1,ZY3 结合现有资料
泉眼、泉群泉域 中低 GF2 目视解译
地下水溢出带 中低 GF2 目视解译
Tab.11  Interpretation ability of hydrogeological elements
解译
要素
可解译程度 建议使用的数据 备注
土体 GF1,ZY3 目视解译结合现有资料
岩体 GF1,ZY3 目视解译结合现有资料
Tab.12  Engineering geological interpretation ability
要素 02C ZY3 GF1 GF2
滑坡
崩塌
分析 区内灾害发育规模均较小,从解译的结果看,02C,ZY3,GF1均无法直接对小型灾害体进行判读,GF2基本能判别出地质灾害的位置和规模。各卫星对中型以上灾害体的解译能力均表现较强
Tab.13  Comparison chart of geological hazard interpretation ability
解译要素 可解译程度 建议使用的数据 备注
崩塌 优先使用GF2,其次为GF1,ZY3 目视解译,多期影像对比
滑坡 优先使用GF2,其次为GF1,ZY3 目视解译,多期影像对比
Tab.14  Interpretation ability table of geological hazard elements
[1] 自然资源部科技发展司. 自然资源部卫星遥感应用报告(2019年)[R]. 北京:自然资源部, 2020.
[1] Department of science and technology development,Ministry of Natural Resources of the People's Republic of China. Report on satellite remote sensing application of the Ministry of Natural Resources (2019)[R]. Beijing:Ministry of Natural Resources of the People’s Republic of China, 2020.
[2] 王润生, 熊盛青, 聂洪峰, 等. 遥感地质勘查技术与应用研究[J]. 地质学报, 2011, 85(11):1699-1743.
[2] Wang R S, Xiong S Q, Nie H F, et al. Remote sensing geology and its application ingeological exploration[J]. Acta Geologica Sinica, 2011, 85(11):1699-1743.
[3] 郑雄伟, 杨金中, 陈玲, 等. 国土资源卫星地质矿产应用成效[J]. 国土资源遥感, 2017, 29(s1):1-7.doi: 10.6046/gtzyyg.2017.s1.01.
doi: 10.6046/gtzyyg.2017.s1.01
[3] Zheng X W, Yang J Z, Chen L, et al. A review on the effects of applying land and resources satellites to geology and mineral resources[J]. Remote Sensing for Land and Resources, 2017, 29(s1):1-7.doi: 10.6046/gtzyyg.2017.s1.01.
doi: 10.6046/gtzyyg.2017.s1.01
[4] 张焜, 马世斌, 李宗仁, 等. 高分一号卫星数据遥感地质解译[J]. 遥感信息, 2017(1):115-123.
[4] Zhang K, Ma S B, Li Z R, et al. Geological interpretation of GF-1 satellite inagery[J]. Remote Sensing Information, 2017(1):115-123.
[5] 陈玲, 梁树能, 周艳, 等. 国产高分卫星数据在高海拔地区地质调查中的应用潜力分析[J]. 国土资源遥感, 2015, 27(1):140-145.doi: 10.6046/gtzyyg.2015.01.22.
doi: 10.6046/gtzyyg.2015.01.22
[5] Chen L, Liang S N, Zhou Y, et al. Potential of applying domestic high-resolution remote sensing data to geological survey in high altitudes[J]. Remote Sensing for Land and Resources, 2015, 27(1):140-145.doi: 10.6046/gtzyyg.2015.01.22.
doi: 10.6046/gtzyyg.2015.01.22
[6] 何凯涛, 甘甫平, 王永江. 高空间分辨率卫星遥感地质微构造及蚀变信息识别研究[J]. 国土资源遥感, 2009(1):97-99.doi: 10.6046/gtzyyg.2009.01.22.
doi: 10.6046/gtzyyg.2009.01.22
[6] He K T, Gan F P, Wang Y J. The ectraction of geological micro-structure and altered rock information with high-resolution satellite images in a small range[J]. Remote Sensing for Land and Resources, 2009(1):97-99.doi: 10.6046/gtzyyg.2009.01.22.
doi: 10.6046/gtzyyg.2009.01.22
[7] 贺奋琴. 基于RS和GIS的水土流失因子提取与分析——以攀枝花市为例[D]. 成都:成都理工大学, 2004.
[7] He F Q. Analysis and Extraction of soil and water loss factors based on RS and GIS——the case of Panzhihua City[D]. Chengdu:Chengdu University of Technology, 2004.
[8] 荆凤, 陈建平. 矿化蚀变信息的遥感提取方法综述[J]. 遥感信息, 2005(2):62-65.
[8] Jing F, Chen J P. The review of the alteration information extraction with remote sensing[J]. Remote Sensing Information, 2005(2):62-65.
[9] 张远飞, 吴健生. 基于遥感图像提取矿化蚀变信息[J]. 矿产勘查, 1999(6):604-606.
[9] Zhang Y F, Wu J S. Extraction of mineralization and alteration information from remote sensing images[J]. Mineral Exploration, 1999(6):604-606.
[10] 沈利霞, 刘丽萍, 苏新旭, 等. 不同植被覆盖率地区遥感矿化蚀变提取研究[J]. 现代地质, 2008, 22(2):293-298.
[10] Shen L X, Liu L P, Su X X, et al. Study on identification of altered wall-rock in areas of different vegetation coverages based on remote sensing[J]. Geoscience, 2008, 22(2):293-298.
[11] 郑纬. 不同自然景观区的矿化蚀变信息检测与提取应用研究[D]. 长沙:中南大学, 2011.
[11] Zheng W. Application Research on detection and extraction of mineralization and alteration information in different natural landscape areas[D]. Changsha:Central South University, 2011.
[12] 郭志娟, 孔牧, 张华, 等. 适合地球化学勘查的景观划分研究[J]. 物探与化探, 2015, 39(1):12-15.
[12] Guo Z J, Kong M, Zhang H, et al. Landscape division suitable for geochemical exploration[J]. Geophysical and Geochemical Exploration, 2015, 39(1):12-15.
[13] 孙家抦. 遥感原理与应用(第二版)[M]. 武汉: 武汉大学出版社, 2009.
[13] Sun J B. Remote sensing theories and application (Second Edition)[M]. Wuhan: Wuhan University Press. 2009.
[14] 贾永红. 数字图像处理(第二版)[M]. 武汉: 武汉大学出版社, 2010.
[14] Jia Y H. Digital image processing (Second Edition)[M]. Wuhan: Wuhan University Press, 2010.
[15] 覃征, 鲍复民, 李爱国, 等. 数字图像融合[M]. 西安: 西安交通大学出版社, 2004.
[15] Qin Z, Bao F M, Li A G, et al. Digital image fusion [M]. Xi’an: Xi’an Jiaotong University Press, 2004.
[16] 齐信, 邵长生, 陈州丰, 等. 多源遥感数据在断裂构造解译中的应用[J]. 大地测量与地球动力学, 2012(32):90-93.
[16] Qi X, Shao C S, Chen Z F, et al. Application of multi-source remote sensing data in fault structure interpretation[J]. Journal of Geodesy and Geodynamics, 2012(32):90-93.
[17] 陈曦, 刘严松. 遥感解译在钒钛磁铁找矿过程中的应用——以攀枝花地区为例[J]. 矿物学报, 2013(s2):745-746.
[17] Chen X, Liu Y S. Application of remote sensing interpretation in vanadium titanium magnetite prospecting:The case of Panzhihua area[J]. Acta Mineralogica Sinica, 2013(s2):745-746.
[18] 陈建平. 断裂构造解译质量的评价[J]. 遥感信息, 1988(3):14-16.
[18] Chen J P. Evaluation of interpretation quality of fault structures[J]. Remote Sensing Information, 1988(3):14-16.
[19] 王丽丽. 攀枝花市土地利用/覆被变化监测与时空演变分析[D]. 成都:成都理工大学, 2010.
[19] Wang L L. Land use/cover change monitoring and spatial-temporal evolution analysis in Panzhihua City[D]. Chengdu:Chengdu University of Technology, 2010.
[20] 聂洪峰, 袁崇桓, 刁淑娟, 等. 遥感技术在攀枝花地区土壤侵蚀调查中的应用研究[J]. 国土资源遥感, 1996(3):15-21.doi: 10.6046/gtzyyg.1996.03.03.
doi: 10.6046/gtzyyg.1996.03.03
[20] Nie H F, Yuan C H, Diao S J, et al. The application of remote sensing technique in the survey of soil erosion in Panzhihua area[J]. Remote Sensing for Land and Resources, 1996(3):15-21.doi: 10.6046/gtzyyg.1996.03.03.
doi: 10.6046/gtzyyg.1996.03.03
[21] 黄洁 .邵怀勇 .杨显华, 等. 四川省矿山开发遥感监测方式与实践[M]. 北京: 测绘出版社, 2013.
[21] Huang J, Shao H Y, Yang X H, et al. Methods and practice on remote sensing monitoring of mine development in Sichuan Province[M]. Beijing: Surveying and Mapping Press, 2013.
[22] 李成尊, 聂洪峰, 汪劲, 等. 矿山地质灾害特征遥感研究[J]. 国土资源遥感, 2005(1):45-48.doi: 10.6046/gtzyyg.2005.01.11.
doi: 10.6046/gtzyyg.2005.01.11
[22] Li C Z, Nie H F, Wang J, et al. A remote sensing study of characteristics of geological disasters in a mine[J]. Remote Sensing for Land and Resources, 2005(1):45-48.doi: 10.6046/gtzyyg.2005.01.11.
doi: 10.6046/gtzyyg.2005.01.11
[23] 李聪. 遥感技术在水文地质勘查中的应用[J]. 水利信息化, 2002(4):35-37.
[23] Li C. Application of remote sensing technology in hydrogeological exploration[J]. Water Conservancy Informatization, 2002(4):35-37.
[24] 童立强, 安国英, 刘春玲, 等. 利用高分辨率遥感数据在水文地质调查中的应用[C]. 深圳:区域遥感应用国际论坛, 2008.
[24] Tong L Q, An G Y, Liu C L, et al. Application of high resolution remote sensing data in hydrogeological survey[C]. Shenzhen:International Forum on Regional Remote Sensing Applications, 2008.
[25] 郭庆十. 遥感技术在区域水文地质调查中应用研究[C]. 南京:中国遥感应用协会暨区域遥感发展与产业高层论坛, 2010:4-6.
[25] Guo Q S. The application study of remote sensing technology in field hydrogeology survey[C]. Nanjing:China Association of Remote Sensing Applications and Regional High Level Forum on Remote Sensing Development and Industry, 2010:4-6.
[26] 潘建永. 遥感技术在1:5万水文地质调查中的应用初探[J]. 河北遥感, 2015(3):15-16.
[26] Pan J Y. Preliminary study on the application of remote sensing technology in 1:50000 hydrogeological survey[J]. Hebei Remote Sensing, 2015(3):15-16.
[27] 尹显科, 黄洁, 刘智. 四川省红层丘陵区地下水遥感综合调查方法和成果[J]. 四川地质学报, 2005, 25(1):35-40.
[27] Yin X K, Huang J, Liu Z. Methods and results of remote sensing geological survey for underground water in red beds hills,Sichuan[J]. Acta Geologica Sichuan, 2005, 25(1):35-40.
[28] 卓宝熙. 工程地质遥感图像典型图谱[M]. 北京: 科学出版社, 1999.
[28] Zhuo B X. Typical atlas of remote sensing image of geology engineering[M]. Beijing: Science Press, 1999.
[29] 卓宝熙. 工程地质遥感判释与应用[M]. 北京: 中国铁道出版社, 2011.
[29] Zhuo B X. Remote sensing interpretation and application of geology engineering[M]. Beijing: China Railway Press, 2011.
[30] 冯东霞, 余德清, 龙解冰, 等. 地质灾害遥感调查的应用前景[J]. 国土资源导刊, 2002, 21(4):314-318.
[30] Feng D X, Yu D Q, Long J B, et al. Application prospect of remote sensing survey of geological disasters[J]. Land and Resources Guide, 2002, 21(4):314-318.
[31] 鲍巨才, 张秀敏. 常见地质灾害的遥感图像解译标志[J]. 科技信息, 2011(10):798-799.
[31] Bao J C, Zhang X M. Remote sensing image interpretation signs of common geological disasters[J]. Science and Technology Information, 2011(10):798-799.
[32] 倪恒, 刘翔宇. 高山峡谷地区的高精度地质灾害遥感解译方法研究[J]. 南方能源建设, 2016, 3(2):146-151.
[32] Ni H, Liu X Y. Study on the method of high-precision geological hazard remote sensing interpretation of reservoir in the mountain and ravine region[J]. Southern Energy Construction, 2016, 3(2):146-151.
[33] 刁淑娟, 刘春玲, 张涛 等. 基于SVM的湖泊咸度等级遥感信息提取方法——以内蒙古巴丹吉林沙漠为例[J]. 国土资源遥感, 2016, 28(4):114-118.doi: 10.6046/gtzyyg.2016.04.18.
doi: 10.6046/gtzyyg.2016.04.18
[33] Diao S J, Liu C L, Zhang T, et al. Extraction of remote sensing information for lake salinity level based on SVM:A case from Badain Jaran desert in Inner Mongolia[J]. Remote Sensing for Land and Resources, 2016, 28(4):114-118.doi: 10.6046/gtzyyg.2016.04.18.
doi: 10.6046/gtzyyg.2016.04.18
[1] ZHANG Wei, ZHANG Tao, ZHENG Xiongwei, QI Jianwei, WANG Guanghui. Application of the software development kit of GXL in the processing of domestic satellite data[J]. Remote Sensing for Natural Resources, 2022, 34(2): 176-183.
[2] JIANG Xiao, LU Yunge, SUN Ang, LI Yongzhi, LIAN Zheng. The application of domestic GF-1 satellite data to geological and mineral resources survey abroad: A case study of Faryab area, Iran[J]. Remote Sensing for Land & Resources, 2021, 33(1): 199-204.
[3] XIAO Chenchao, DONG Lina, CHEN Weirong, WEI Hongyan. The capability of domestic satellites’ overseas geological service based on multiple factor analysis[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 8-12.
[4] DONG Shuangfa, JIANG Xue, LI Mingsong, WANG Ruijun, SUN Yongbin. Domestic satellite data of remote sensing geological interpretation system based on the total factor: A case study of the arid and semi-arid mountains[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 21-26.
[5] DING Yuxue, CHU Yu, XUE Guangyin. Using domestic satellite data to carry out wetland survey:Exemplified by Heilongjiang Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 151-154.
[6] ZHENG Xiongwei, WEI Yingjuan, LI Chunying, LEI Bing, GAN Yuhang. The realization of intelligent optimization based on multi-source and massive domestic satellite image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 13-20.
[7] Ding Yuxue. Research on natural resources based on domestic satellite data:Exemplified by Midwest Heilongjiang Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 121-126.
[8] ZHANG Youying, YU Jiangkuan, ZHANG Dandan, LIN Huanuan. Practical solution for background data update of domestic satellite images: A case study of remote sensing images of geological hazard prone areas[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 149-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech