Please wait a minute...
 
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (3) : 97-106     DOI: 10.6046/zrzyyg.2020372
|
Ship detection based on multi-scale feature enhancement of remote sensing images
LIU Wanjun(), GAO Jiankang(), QU Haicheng, JIANG Wentao
College of Software, Liaoning Technical University, Huludao 125105, China
Download: PDF(5105 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Aiming at the omission in the ship target detection from remote sensing images with complex background caused by the arbitrary and dense arrangement of ships, this study, based on the rotation region generation network, proposes a ship target detection algorithm using the multi-scale feature enhancement of remote sensing images. The detailed steps are as follows. Firstly, improve the feature pyramid network using the receptive field module with dense connection at the feature extraction stage. Then obtain the characteristics of multi-scale receptive fields using the convolution of different dilate rates. In this way, the expression of high-level semantic information can be enhanced. Then design a feature fusion structure based on attention mechanisms to restrain noise and highlight the target characteristics. Afterward, fuse all layers according to the spatial weight value of each layer to obtain a feature layer that takes both semantic and position information into account. Then conduct attention enhancement to the features of this layer, and integrate the enhanced features into the original feature layer in the pyramid network. Consequently, pay more attention to target locations by increasing attention loss and optimizing the attention network according to the classification and regression loss. As indicated by the experiment results of DOTA remote sensing dataset, the average precision of this algorithm is as high as 71.61%, which is higher than the latest ship target detection algorithm based on remote sensing images. In this manner, the omission in ship target detection can be effectively solved.

Keywords convolution neural network      multi-scale feature fusion      attention mechanism      remote sensing image      ship target detection     
ZTFLH:  TP751.1  
Corresponding Authors: GAO Jiankang     E-mail: liuwanjun@lntu.edu.cn;1554797460@qq.com
Issue Date: 24 September 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wanjun LIU
Jiankang GAO
Haicheng QU
Wentao JIANG
Cite this article:   
Wanjun LIU,Jiankang GAO,Haicheng QU, et al. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 97-106.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2020372     OR     https://www.gtzyyg.com/EN/Y2021/V33/I3/97
Fig.1  Feature pyramid network structure
Fig.2  The representation of oriented bounding box
Fig.3  Overall framework
Fig.4  The module of DCRF
Fig.5  Feature fusion structure
Fig.6  Dual attention network
Fig.7  Visualization of the attention network
实验方法 召回率/% 精确率/% AP/% 检测时间/s
基础网络 76.56 87.86 67.37 0.21
+DCRF 80.82 85.92 69.52 0.21
+AFF 80.99 85.82 69.66 0.22
本文方法 81.74 87.04 71.61 0.22
Tab.1  Results of ablative experiments of different module
类型 示例1 示例2 示例3
基础网络结果图
DCRF结果图
MFEDet结果图
基础网络特征图
MFEDet特征图
Tab.2  Show the results of different modules
对比方法 召回率 精确率 AP
FR-O 58.53 65.60 39.24
R-DFPN 67.85 87.67 59.78
RRPN 69.35 89.68 63.42
RADet 68.86
本文方法 81.74 87.04 71.61
Tab.3  Different methods comparison results(%)
方法 训练时间 测试时间
FR-O 0.34 0.10
RRPN 0.85 0.35
R-DFPN 1.15 0.38
Baseline 0.58 0.21
本文方法 0.64 0.22
Tab.4  Training time and test time for each method(s)
[1] 王彦情, 马雷, 田原. 光学遥感图像舰船目标检测与识别综述[J]. 自动化学报, 2011, 37(9):1029-1039.
[1] Wang Y Q, Ma L, Tian Y. Overview of ship target detection and recognition based on optical remote sensing image[J]. Acta Automatica Sinica, 2011, 37(9):1029-1039.
[2] 谢奇芳, 姚国清, 张猛. 基于Faster R-CNN的高分辨率图像目标检测技术[J]. 国土资源遥感, 2019, 31(2):38-43.doi: 10.6046/gtzyyg.2019.02.06.
doi: 10.6046/gtzyyg.2019.02.06
[2] Xie Q F, Yao G Q, Zhang M. Research on high resolution image object detection technology based on Faster R-CNN[J]. Remote Sensing for Land and Resources, 2019, 31(2):38-43.doi: 10.6046/gtzyyg.2019.02.06.
doi: 10.6046/gtzyyg.2019.02.06
[3] 史文旭, 江金洪, 鲍胜利. 基于特征融合的遥感图像舰船目标检测方法[J]. 光子学报, 2020, 49(7):57-67.
[3] Shi W X, Jiang J H, Bao S L. Ship target detection in remote sensing image based on feature fusion[J]. Acta Photonica Sinica, 2020, 49(7):57-67.
[4] Szegedy C, et al. Going deeper with convolutions[C]// IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Boston,MA, 2015:1-9.
[5] Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Las Vegas,NV, 2016:779-788.
[6] Liu W, Anguelov D, Erhan D, et al. Ssd:Single shot multibox detector[C]// European Conference on Computer Vision,Springer,Cham, 2016:21-37.
[7] Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[C]// Advances in neural information processing systems, 2015:91-99.
[8] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:2117-2125.
[9] He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision, 2017:2961-2969.
[10] Ma J. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Transactions on Multimedia, 2018, 20(11):3111-3122.
doi: 10.1109/TMM.2018.2818020 url: https://ieeexplore.ieee.org/document/8323240/
[11] Yang X, Sun H, Fu K, et al. Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks[J]. Remote Sensing, 2018, 10(1):132.
doi: 10.3390/rs10010132 url: http://www.mdpi.com/2072-4292/10/1/132
[12] Zhu Y, Mu J, Pu H, et al. FRFB:Integrate receptive field block into feature fusion net for single shot multibox detector[C]// 2018 14th International Conference on Semantics,Knowledge and Grids(SKG),Guangzhou,China, 2018:173-180.
[13] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Las Vegas,NV, 2016:2818-2826.
[14] Huang G, Liu Z, Der Maaten L V, et al. Densely connected convolutional networks[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),Honolulu,HI, 2017:2261-2269.
[15] Pang J, Chen K, Shi J, et al. Libra R-CNN:Towards balanced learning for object detection[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),Long Beach,CA,USA, 2019:821-830.
[16] Wang X, Girshick R, Gupta A, et al. Non-local neural networks[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,UT, 2018:7794-7803.
[17] Woo S, Park J, Lee J Y, et al. CBAM:Convolutional block attention module[J]. Lecture Notes in Computer Science, 2018:3-19.
[18] Hu J, Shen J, Sun G. Squeeze-and-excitation networks[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,UT, 2018:7132-7141.
[19] Han J, Zhou P, Zhang D, et al. Efficient,simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2014, 89:37-48.
[20] Xia G, et al. 2018. DOTA:A large-scale dataset for object detection in aerial images[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,UT, 2018:3974-3983.
[21] Li Y, Huang Q, Pei X, et al. RADet:Refine feature pyramid network and multi-layer attention network for arbitrary-oriented object detection of remote sensing images[J]. Remote Sensing, 2020, 12(3):389.
doi: 10.3390/rs12030389 url: https://www.mdpi.com/2072-4292/12/3/389
[1] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[2] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[3] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[4] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[5] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[6] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[7] ZHENG Zongsheng, LIU Haixia, WANG Zhenhua, LU Peng, SHEN Xukun, TANG Pengfei. Improved 3D-CNN-based method for surface feature classification using hyperspectral images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 105-111.
[8] XIONG Dongyang, ZHANG Lin, LI Guoqing. MaxEnt-based multi-class classification of land use in remote sensing image interpretation[J]. Remote Sensing for Natural Resources, 2023, 35(2): 140-148.
[9] JIN Yuanhang, XU Maolin, ZHENG Jiayuan. A dead tree detection algorithm based on improved YOLOv4-tiny for UAV images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 90-98.
[10] HU Jianwen, WANG Zeping, HU Pei. A review of pansharpening methods based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
[11] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[12] LYU Yanan, ZHU Hong, MENG Jian, CUI Chengling, SONG Qiqi. A review and adaptability study of deep learning models for vehicle detection based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 22-32.
[13] SHEN Jun’ao, MA Mengting, SONG Zhiyuan, LIU Tingzhou, ZHANG Wei. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4): 129-135.
[14] ZHANG Pengqiang, GAO Kuiliang, LIU Bing, TAN Xiong. Classification of hyperspectral images based on deep Transformer network combined with spatial-spectral information[J]. Remote Sensing for Natural Resources, 2022, 34(3): 27-32.
[15] CHENG Tao. A method for vector geographic information acquisition based on synchronous correction with remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 59-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech