Please wait a minute...
 
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (3) : 130-137     DOI: 10.6046/zrzyyg.2020381
|
Variation and effect analysis of the water level of the Taihu Lake based on multi-source satellite altimetry data
WEI Haohan1(), XU Renjie1, YANG Qiang1, ZHOU Quanping2
1. College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
2. Nanjing Center, China Geological Survey, Nanjing 210016, China
Download: PDF(4127 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The water level of the Taihu Lake from January 2003 to April 2019 was monitored using the waveform retracking method based on the altimetry data of Envisat and Cryosat-2 satellites. Through gross error elimination and system error correction as well as the boundary extraction of Taihu Lake using MODIS remote sensing images, the long time series of the water level of the Taihu Lake were obtained. Based on these as well as weather observation data and the data on urban population changes, the variation pattern of the water level and its response to climate change and human activities were discussed. The results are as follows. The water level of the Taihu Lake showed an upward trend (0.036 m/a) during 2003—2009 and a downward trend (-0.014 4 m/a) during 2010—2019. It was affected by the ground surface temperature and precipitation in a periodic manner, especially the precipitation. In addition, as the urbanization in the cities around the Taihu Lake accelerated, the population growth rate in the cities had increased and the water demand had notably increased accordingly from 2009. This resulted in a distinct downward trend in the water level of the Taihu Lake since 2009, indicating that human activities affected the water level of the Taihu Lake over.

Keywords satellite altimetry      Envisat      Cryosat-2      Taihu water level change      climate change      human activities     
ZTFLH:  P228.3  
Issue Date: 24 September 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haohan WEI
Renjie XU
Qiang YANG
Quanping ZHOU
Cite this article:   
Haohan WEI,Renjie XU,Qiang YANG, et al. Variation and effect analysis of the water level of the Taihu Lake based on multi-source satellite altimetry data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 130-137.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2020381     OR     https://www.gtzyyg.com/EN/Y2021/V33/I3/130
Fig.1  Overview of Taihu Lake and data distribution map
Fig.2  Comparison of Envisat satellite altimetry water level and surface measured water level
Fig.3  Comparison of Cryosat-2 satellite altimetry water level and surface measured water level
卫星 相关系数
(R)
显著性
(P)
均方根误
差(RMSE)/m
验证水
位个数
Envisat 0.822 4 P<0.01 0.083 2 75
Cryosat-2 0.822 9 P<0.01 0.107 7 39
Tab.1  Correlation between satellite altimetry water level and surface measured water level
Fig.4  Long time series of water level of Taihu Lake (2003—2019)
Fig.5  Trend of water level and monthly mean surface temperature in Taihu Lake
Fig.6  Trend of water level and monthly precipitation in Taihu Lake
Fig.7  Trend of water level of Taihu Lake and population growth
Fig.8  Comparison water level of Taihu Lake and water consumption change
[1] 王跃峰, 许有鹏, 张倩玉, 等. 太湖平原区河网结构变化对调蓄能力的影响[J]. 地理学报, 2016, 71(3):449-458.
[1] Wang Y F, Xu Y P, Zhang Q Y, et al. Influence of stream structure change on regulation capacity of river networks in Taihu Lake Basin[J]. Acta Geographica Sinica, 2016, 71(3):449-458.
[2] 赵云, 廖静娟, 沈国状, 等. 卫星测高数据监测青海湖水位变化[J]. 遥感学报, 2017, 21(4):633-644.
[2] Zhao Y, Liao J J, Shen G Z, et al. Monitoring the water level changes in Qinghai Lake with satellite altimetry data[J]. Journal of Remote Sensing, 2017, 21(4):633-644.
[3] Sakaros B, Frédéric F, Fabien B, et al. Monitoring water levels and discharges using Radar altimetry in an ungauged river basin:The case of the Ogooué[J]. Remote Sensing, 2018, 10(3):350.
doi: 10.3390/rs10020350 url: http://www.mdpi.com/2072-4292/10/2/350
[4] 李建成, 褚永海, 姜卫平, 等. 利用卫星测高资料监测长江中下游湖泊水位变化[J]. 武汉大学学报(信息科学版), 2007(2):144-147.
[4] Li J C, Chu Y H, Jiang W P, et al. Monitoring level fluctuation of lakes in Yangtze river basin by altimetry[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2):144-147.
[5] Jiang L G, Nielsen K, Andersen O B, et al. Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data[J]. Journal of Hydrology, 2017, 544:109-124.
doi: 10.1016/j.jhydrol.2016.11.024 url: https://linkinghub.elsevier.com/retrieve/pii/S0022169416307302
[6] Frappart F, Calmant S, Cauhopé M, et al. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin[J]. Remote Sensing of Environment, 2006, 100(2):252-264.
doi: 10.1016/j.rse.2005.10.027 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425705003585
[7] Song C S C, Ye Q Y Q, Sheng Y S Y, et al. Combined ICESat and CryoSat-2 altimetry for accessing water level dynamics of Tibetan lakes over 2003-2014[J]. Water, 2015, 7(9):4685-4700.
doi: 10.3390/w7094685 url: http://www.mdpi.com/2073-4441/7/9/4685
[8] Song C, Ye Q, Cheng X. Shifts in water-level variation of Namco in the central Tibetan Plateau from ICESat and CryoSat-2 altimetry and station observations[J]. Science Bulletin, 2015(14):67-77.
[9] Soussi B. Envisat altimetry level 2 user manual[EB/OL]. Paris:ESA, 2011,https://earth.esa.int/web/guest/home.
url: https://earth.esa.int/web/guest/home
[10] Frappart F, Calman T S, Cauhopé M, et al. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin[J]. Remote Sensing of Environment, 2006, 100(2):252-264.
doi: 10.1016/j.rse.2005.10.027 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425705003585
[11] Mertz J D, Urien S. Baseline-C CryoSat ocean processor ocean product handbook[EB/OL]. Paris:ESA, 2019,https://science-pds.Cryosat-2.esa.int.
url: https://science-pds.Cryosat-2.esa.int
[12] Kamel Didan A B M R. MODIS vegetation index user’s guide[EB/OL]. Tucson:The University of Arizona, 2015,https://modis.gsfc.nasa.gov/data/dataprod/mod13.php.
url: https://modis.gsfc.nasa.gov/data/dataprod/mod13.php
[13] 赵煜飞, 朱江, 许艳, 等. 气象数据集说明文档[EB/OL]. 北京:国家气象信息中心资料服务室, 2012. http://data.cma.cn.
url: http://data.cma.cn
[13] Zhao Y F, Zhu J, Xu Y. et al. Surface climate changes per month grid 0.5[EB/OL]. Beijing:Data Service Room of National Meteorological Information Center, 2012. http://data.cma.cn.
url: http://data.cma.cn
[14] Kuo H Y. Comparison of GPS radio occultation soundings with radiosondes[J]. Geophysical Research Letters, 2005, 32(5):L5817.
doi: 10.1029/2004GL021443 url: http://doi.wiley.com/10.1029/2004GL021443
[15] 太湖流域管理局. 水情月报[EB/OL]. 上海:太湖流域管理局,2007—2019. http://www.tba.gov.cn.
url: http://www.tba.gov.cn
[15] Bureau of Taihu Lake basin. Water monthly report[EB/OL]. Shanghai:Bureau of Taihu Lake Basin,2007—2019. http://www.tba.gov.cn.
url: http://www.tba.gov.cn
[16] 国家统计局人口和就业统计司. 中国人口统计年鉴[M]. 北京: 中国统计出版社, 2003-2018.
[16] Department of Population and Employment Statistics National Bureau Statistics of Chian. China population statistics yearbook[M]. Beijing: China Statistics Press, 2003-2018.
[17] 文汉江, 金涛勇, 朱广彬. 卫星测高原理及应用[M]. 北京: 测绘出版社, 2017.
[17] Wen H J, Jin T Y, Zhu G B, et al. Principle and application of satellite altimetry[M]. Beijing:The mapping publishing company, 2017.
[18] Song C, Ye Q, Sheng Y, et al. Combined ICESat and CryoSat-2 altimetry for accessing water level dynamics of Tibetan lakes over 2003-2014[J]. Water, 2015, 7(9):4685-4700.
doi: 10.3390/w7094685 url: http://www.mdpi.com/2073-4441/7/9/4685
[19] 于欢, 张树清, 李晓峰, 等. 基于TM影像的典型内陆淡水湿地水体提取研究[J]. 遥感技术与应用, 2008(3):310-315.
[19] Yu H, Zhang S Q, Li X F, et al. Inland limnetic wetlands water body extraction using TM imagery[J]. Remote Sensing Technology and Application, 2008(3):310-315.
[20] 汪丹, 王点, 齐述华. 鄱阳湖水位-淹水面积关系不确定性的分析[J]. 长江流域资源与环境, 2016, 25(s1):95-102.
[20] Wang D, Wang D, Qi S H. Uncertainty analysis of Poyang lake water level-flooded area relationship[J]. Resources and Environment in the Yangtze Basin, 2016, 25(s1):95-102.
[21] 张克祥, 张国庆. MODIS监测的鄱阳湖水域面积变化研究(2000—2011年)[J]. 东华理工大学学报(社会科学版), 2013, 32(3):390-396.
[21] Zhang K X, Zhang G Q. Monitoring area changes of Poyang lake by MODIS data (2000—2011)[J]. Journal of East China University of Technology (Social Science), 2013, 32(3):390-396.
[22] 赵云. 雷达高度计数据中国主要湖泊水位变化监测方法研究[D]. 北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
[22] Zhang Y. Method of monitoring water level change of main lakes in China with Radar altimeter data[D]. Beijing:The University of Chinese Academy of Sciences, 2017.
[23] Gao L, Liao J J, Shen G Z. Monitoring lake-level changes in the Qinghai-Tibetan Plateau using radar altimeter data (2002—2012)[J]. Journal of Applied Remote Sensing, 2013, 7(1):073470.
doi: 10.1117/1.JRS.7.073470 url: http://remotesensing.spiedigitallibrary.org/article.aspx?doi=10.1117/1.JRS.7.073470
[24] 张鑫, 吴艳红, 张鑫. 基于多源卫星测高数据的扎日南木错水位动态变化(1992—2012年)[J]. 自然资源学报, 2015, 30(7):1153-1162.
[24] Zhang X, Wu Y H, Zhang X. Zhari Namco water level change detection using multi-satellite altimetric data during 1992—2012[J]. Journal of Natural Resources, 2015, 30(7):1153-1162.
[1] PANG Xin, LIU Jun. Effects of climate changes on the NDVI of vegetation in Asia[J]. Remote Sensing for Natural Resources, 2023, 35(2): 295-305.
[2] ZHANG Zhenqi, CAI Huiwen, ZHANG Pingping, WANG Zelin, LI Tingting. A GEE-based study on the temporal and spatial variations in the carbon source/sink function of vegetation in the Three-River Headwaters region[J]. Remote Sensing for Natural Resources, 2023, 35(1): 231-242.
[3] WANG Juan, WANG Zhihong, ZHANG Jianguo, CHU Na, LI Si, YIN Zhan. Remote sensing monitoring and impact intensity assessment of human activities in Henan national nature reserves[J]. Remote Sensing for Natural Resources, 2022, 34(4): 235-242.
[4] JIN Chengming, YANG Xingwang, JING Haitao. A RS-based study on changes in fractional vegetation cover in North Shaanxi and their driving factors[J]. Remote Sensing for Natural Resources, 2021, 33(4): 258-264.
[5] WANG Jiaxin, SA Chula, MAO Kebiao, MENG Fanhao, LUO Min, WANG Mulan. Temporal and spatial variation of soil moisture in the Mongolian Plateau and its response to climate change[J]. Remote Sensing for Land & Resources, 2021, 33(1): 231-239.
[6] PAN Meng, CAO Yungang. Present status and perspectives of remote sensing survey of glacial lakes in High Asia[J]. Remote Sensing for Land & Resources, 2021, 33(1): 1-8.
[7] Hongxia LUO, Shengpei DAI, Maofen LI, Yuping LI, Qian ZHENG, Yingying HU. Relative roles of climate changes and human activities in vegetation variables in Hainan Island[J]. Remote Sensing for Land & Resources, 2020, 32(1): 154-161.
[8] Qinglin MENG, Mingyu LI, Chunying REN, Zongming WANG, Yanlin TIAN. Dynamic assessment of habitat quality in eastern Jilin Province based on HSI model[J]. Remote Sensing for Land & Resources, 2019, 31(3): 140-147.
[9] Yuting ZHANG, Zhenfei ZHANG, Zhi ZHANG. Remote sensing study of vegetation coverage during the period 1992—2014 in Dananhu desert area, Xinjiang[J]. Remote Sensing for Land & Resources, 2018, 30(1): 187-195.
[10] ZHENG Zhaoju, ZENG Yuan, ZHAO Yujin, ZHAO Dan, WU Bingfang. Monitoring and dynamic analysis of fractional vegetation cover in southwestern China over the past 15 years based on MODIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 128-136.
[11] YAN Qiang, LIAO Jingjuan, SHEN Guozhuang. Remote sensing analysis and simulation of change of Ulan Ul Lake in the past 40 years[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 152-157.
[12] HUANG Wei-dong, LIAO Jing-juan, SHEN Guo-zhuang. Lake Change in Past 40 Years in the Southern Nagqu District of Tibet and Analysis of Its Driving Forces[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 122-128.
[13] LU Yun-Ge, LIU Xiao, ZHANG Zhen-De. An Analysis of Characteristics and Driving Forces of Land Desertification in Sanjiangyuan Region[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 72-76.
[14] YU De-Hao, LONG Fan, FANG Hong-Bin, HAN Tian-Cheng. Research on Shallow Groundwater Information Extraction Based on Data Fusion[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(3): 114-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech