Please wait a minute...
 
国土资源遥感  2015, Vol. 27 Issue (3): 71-76    DOI: 10.6046/gtzyyg.2015.03.13
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于生态参数的岩溶峰丛区石灰岩基岩表面溶蚀率遥感反演
陈梦杰1,2, 吴虹1,2, 刘超3, 周旻玥1, 陆丁滒1, 郭威4
1. 桂林理工大学地球科学学院遥感应用研究所, 桂林 541006;
2. 桂林理工大学测绘学院/广西空间信息与测绘重点实验室, 桂林 541006;
3. 唐山市曹妃甸区国土资源局, 唐山 063000;
4. 中南冶金地质研究所, 宜昌 443000
Remote sensing inversion of dissolution rate of limestone bedrock surface based on ecological parameters in Karst areas
CHEN Mengjie1,2, WU Hong1,2, LIU Chao3, ZHOU Minyue1, LU Dingge1, GUO Wei4
1. Institute of Remote Sensing Applications, School of Earth Sciences, Guilin University of Technology, Guilin 541006, China;
2. Spatial Information and Mapping Key Laboratory of Guangxi/School Surveying and Mapping, Guilin University of Technology, Guilin 541006, China;
3. Tangshan Caofeidian Area of Land and Resources Bureau, Tangshan 063000, China;
4. Central South Institute of Metallurgical Geology, Yichang 443000, China
全文: PDF(3706 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 为了探索岩溶峰丛区生态参数与石灰岩基岩表面溶蚀率的相关性,用相关生态参数反演土层下石灰岩基岩表面的溶蚀率,从而间接估算其变形。选择桂林丫吉村岩溶峰丛区为研究区,以Landsat5 TM多光谱数据为信息源,提取归一化差值植被指数(normalized difference vegetation index,NDVI)、地面温度及土壤湿度等遥感参数; 运用SPSS统计软件对这3种参数分别与石灰岩溶蚀率进行了相关分析,确定其相关系数分别为-0.91,0.85及0.93; 在此基础上,通过逐步回归分析,建立了运用NDVI估算植被覆盖下石灰岩表面溶蚀率的遥感反演模型。结果表明: NDVI与石灰岩溶蚀率相关性最大,所以植被信息是石灰岩表层基岩溶蚀的主要间接标志; 溶蚀率与NDVI指数存在线性关系,因此只要已知研究区其他地区的NDVI指数,即可估算出该地区的石灰岩基岩表面溶蚀率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安志宏
聂洪峰
王昊
荆青青
关键词 资源一号02C星矿山遥感监测应用研究    
Abstract:To explore the correlation between the ecological parameters of Karst peaks and the dissolution rate of surface limestone bedrock, the authors selected the relevant ecological parameters to indirectly estimate the dissolution rate of limestone bedrock under the soil surface and, based on TM multi-band data of Landsat5, chose Karst area of Yaji Village in Guilin as the study area for the purpose of extracting its sensing parameters comprising NDVI, ground temperature and soil moisture. Using SPSS statistical software, the authors made a correlation analysis of these three factors with the limestone dissolution rate and obtained their correlation coefficients, which are-0.91, 0.85 and 0.93 respectively. A computing remote inversion model of limestone surface dissolution amount dissolution rate, which is covered by vegetation, was established by using NDVI to perform estimatation through regression analysis. The results show that NDVI and limestone dissolution rate have the maximum correlation. Therefore, the vegetation information is an indirect sign of dissolution of limestone bedrock surface. There is a linear relationship between the dissolution rate and the NDVI index. So long as the NDVI index is known in other parts of the study area, the limestone dissolution rate in this area can be estimated.
Key wordsZY-1 02C satellite data    remote sensing monitoring for mineral resources exploration    application study
收稿日期: 2014-05-06      出版日期: 2015-07-23
:  TP751.1  
基金资助:国家科技支撑计划项目"漓江流域遥感动态监测与应用示范关键技术"(编号: 2012BAC16B01-2)和广西科技厅科技攻关项目"漓江流域生态环境保护与可持续发展研究"(编号: 桂科攻1298006-1)共同资助。
通讯作者: 吴虹(1947-),男,教授,博士生导师。Email:wuhong@gute.edu.cn。
作者简介: 陈梦杰(1988-),女,硕士研究生,研究方向为遥感技术与应用。Email:chenmengjie0820@sina.com。
引用本文:   
陈梦杰, 吴虹, 刘超, 周旻玥, 陆丁滒, 郭威. 基于生态参数的岩溶峰丛区石灰岩基岩表面溶蚀率遥感反演[J]. 国土资源遥感, 2015, 27(3): 71-76.
CHEN Mengjie, WU Hong, LIU Chao, ZHOU Minyue, LU Dingge, GUO Wei. Remote sensing inversion of dissolution rate of limestone bedrock surface based on ecological parameters in Karst areas. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 71-76.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2015.03.13      或      https://www.gtzyyg.com/CN/Y2015/V27/I3/71
[1] 袁道先.现代岩溶学和全球变化研究[J].地学前缘,1997,4(1/2):23-27. Yuan D X.Modern Karstology and global change study[J].Earth Science Frontiers,1997,4(1/2):23-27.
[2] 袁道先,章程.岩溶动力学的理论探索与实践[J].地球学报,2008,29(3):355-365. Yuan D X,Zhang C.Karst dynamics theory in China and its practice[J].Acta Geoscientica Sinica,2008,29(3):355-365.
[3] 李恩香,蒋忠诚,曹建华,等.广西弄拉岩溶植被不同演替阶段的主要土壤因子及溶蚀率对比研究[J].生态学报,2004,24(6):1131-1139. Li E X,Jiang Z C,Cao J H,et al.The comparison of properties of Karst soil and Karst erosion ratio under different successional stages of Karst vegetation in Nongla,Guangxi[J].Acta Ecologica Sinica,2004,24(6):1131-1139.
[4] 曹建华,袁道先,潘根兴,等.不同植被下土壤碳转移对岩溶动力系统中碳循环的影响[J].地球与环境,2004,32(1):90-96. Cao J H,Yuan D X,Pan G X,et al.Influence of soil carbon transfer under different vegetations on carbon cycle of Karst dynamics system[J].Earth and Environment,2004,32(1):90-96.
[5] 李涛,赵东兴,张美良,等.土壤CO2、土壤水的动态特征及其对岩溶作用的驱动[J].热带地理,2013,33(5):575-581. Li T,Zhao D X,Zhang M L,et al.Dynamic characteristics of the soil CO2 and soil water chemistry,and their driving action on Karstification[J].Tropical Geography,2013,33(5):575-581.
[6] 于奭,李幼玲,林玉石,等.酸雨对碳酸盐岩的溶蚀能力及溶蚀表面微形态[J].桂林理工大学学报,2012,32(1):48-54. Yu S,Li Y L,Lin Y S,et al.Carbonate rock acid rain dissolution capacity and surface dissolution micromorphology[J].Journal of Guilin University of Technology,2012,32(1):48-54.
[7] 章程,蒋勇军,Lian Y Q,等.利用SWMM模型模拟岩溶峰丛洼地系统降雨径流过程——以桂林丫吉试验场为例[J].水文地质工程地质,2007,29(3):10-14. Zhang C,Jiang Y J,Lian Y Q,et al.Rainfall-runoff simulation of a typical Karst Fengcong depression system using SWMM model:A case study of the Yaji experimental site in Guilin[J].Hydrogeology Engineering Geology,2007,29(3):10-14.
[8] 李为,余龙江,李涛,等.岩溶生态系统土壤酶活性的时空动态及其与土壤肥力的关系——以桂林丫吉村岩溶试验场为例[J].农业环境科学学报,2008,27(1):260-266. Li W,Yu L J,Li T,et al.Seasonal and spatial dynamics of soil enzyme activities and its relationship to soil fertility in Karst ecosystem:A case study of Guilin Yaji Karst experimental site[J].Journal of Agro-Environment Science,2008,27(1):260-266.
[9] 吴虹,贾志强.遥感地质学实验教程[M].北京:地质出版社,2012:141-143. Wu H,Jia Z Q.Remote Sensing Geology Experiment Tutorial[M].Beijing:Geological,2012:141-143.
[10] 郑战辉.陆地卫星ETM+与IKONOS多光谱图像的融合研究[D].郑州:解放军信息工程大学,2004. Zheng Z H.The Landsat ETM+ and IKONOS Multi-spectral Image Fusion Research[D].Zhengzhou:Information Engineering University of the People's Liberation Army,2004.
[11] 何媛媛.岩溶生态系统中土壤及典型植物碳酸酐酶对岩溶作用的影响[D].桂林:广西师范大学,2010. He Y Y.Impact of Carbonic Anhydrase in Soil and Typical Plants on the Karst Process in the Karst Ecosystem[D].Guilin:Guangxi Normal University,2010.
[12] 梁保平,李艺,陈可宙.桂林市NDVI、地表温度的地物特征及相关性研究[J].遥感技术与应用,2012,27(3):429-435. Liang B P,Li Y,Chen K Z.A research on land features and correlation between NDVI and land surface temperature in Guilin City[J].Remote Sensing Technology and Application,2012,27(3):429-435.
[13] 曹建华,杨慧,康志强.区域碳酸盐岩溶蚀作用碳汇通量估算初探:以珠江流域为例[J].科学通报,2011,56(26):2181-2187. Cao J H,Yang H,Kang Z Q.Preliminary regional estimation of carbon sink flux by carbonate rock corrosion:A case study of the Pearl River Basin[J].Chinese Science Bulletin,2011,56(35):3766-3773.
[14] 曹翠.花山花岗岩型铀矿遥感热红外反演成矿要素研究[D].桂林:桂林理工大学,2012. Cao C.Study on Inversion of Alteration Mineral Information of Granite-type Uranium Deposits Using Thermal Infrared Remote Sensing Technique in Huashan Granite Body[D].Guilin:Guilin University of Technology,2012.
[1] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[2] 陈栋, 姚维岭. 基于ArcPy与定制ArcToolbox的矿山新增图斑自动编号及方法改进[J]. 国土资源遥感, 2021, 33(2): 262-269.
[3] 刘晰, 郝利娜, 杨显华, 黄洁, 张志, 杨武年. 矿山遥感监测指标快速统计方法研究与实现[J]. 国土资源遥感, 2020, 32(2): 259-265.
[4] 薛庆, 吴蔚, 李名松, 董双发, 章新益, 石海港. 高分一号数据在矿山遥感监测中的应用[J]. 国土资源遥感, 2017, 29(s1): 67-72.
[5] 刁明光, 薛涛, 李建存, 李文吉, 梁建东. 基于ArcGIS的矿山遥感监测成果编制系统[J]. 国土资源遥感, 2016, 28(3): 194-199.
[6] 安志宏, 聂洪峰, 王昊, 荆青青. ZY-1 02C星数据在矿山遥感监测中的应用研究与分析[J]. 国土资源遥感, 2015, 27(2): 174-182.
[7] 周进生, 牛建英, 张旭, 于艳蕊. 矿山遥感监测评估特点与指标体系[J]. 国土资源遥感, 2014, 26(2): 1-4.
[8] 杨清华, 齐建伟, 孙永军. 高分辨率卫星遥感数据在土地利用动态监测中的应用研究[J]. 国土资源遥感, 2001, 13(4): 20-27,68.
[9] 郝艳梅, 高新法, 张义文 . 遥感技术在下庄地区地热资源开发中的应用研究[J]. 国土资源遥感, 2001, 13(1): 19-24,30.
[10] 王江山, 周咏梅. NOAA-AVHRR在青海省牧草和积雪业务性监测中的应用[J]. 国土资源遥感, 1995, 7(3): 29-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发