Please wait a minute...
 
国土资源遥感  2015, Vol. 27 Issue (4): 68-72    DOI: 10.6046/gtzyyg.2015.04.11
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于FY-2C数据的地表温度反演验证——以黄河源区玛曲为例
王亚维1, 宋小宁1, 唐伯惠2, 李召良3,4, 冷佩1
1. 中国科学院大学资源与环境学院, 北京 100049;
2. 中国科学院地理科学与资源研究所, 北京 100101;
3. 中国农业科学院农业资源与农业区划研究所农业部农业信息技术重点实验室, 北京 100081;
4. 法国斯特拉斯堡大学ICube实验室, 斯特拉斯堡 67412
Validation of FY-2C derived land surface temperature over the source region of the Yellow River: A case study of Maqu County
WANG Yawei1, SONG Xiaoning1, TANG Bohui2, LI Zhaoliang3,4, LENG Pei1
1. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China;
2. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
3. Key Laboratory of Agri-Informatics, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agriculture Sciences, Beijing 100081, China;
4. ICube of Universit? de Strasbourg, Strasbourg 67412, France
全文: PDF(2920 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

地表温度是气候、水文和生态等研究领域的基本参数,在地表水量和能量平衡的研究和应用中发挥着十分重要的作用。强烈的异质性是地表温度反演精度不高的主要原因之一。该文以黄河源区玛曲为研究区,评估FY-2C数据的地表温度反演精度,为将来温度反演算法和产品的进一步发展提供依据。首先,以与FY-2C相同空间分辨率的MODIS地表温度产品(MOD11B1)为地表温度真值,对反演的地表温度进行了验证; 然后,利用研究区内20个采样点的土壤温度(5 cm)实测数据对反演结果进行验证。结果表明,FY-2C地表温度与MODIS温度产品具有较好的相关性,相关系数在0.72~0.95之间,均方根误差在0.44~3.87 K之间,平均均方根误差为1.90 K; 反演结果和实测数据的相关系数为0.69。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁冰
魏海洋
白玉龙
刘建华
杜明义
关键词 传统民居聚落基础设施与环境管理多源空间数据采集与存储移动GIS与物联网智能移动旅游自助服务    
Abstract

Land surface temperature (LST) is an essential parameter in such fields of research as climate, hydrology and ecology, and it plays a significant role in the understanding of the water and energy balance of the Earth's surface. Because the heterogeneity of the underlying surface is most likely a main source of the uncertainties of the satellite derived LST, this paper aims to evaluate the accuracy of the FY-2C derived LST over the heterogeneous area of Maqu County in the source region of the Yellow River and subsequently to provide solid basis for the future development of the LST inversion algorithm and product. MODIS LST product (MOD11B1) was primarily conducted to verify the FY-2C derived LST over the study area. In addition to the MODIS data, soil temperature measurements from 20 soil samples of the study area were also implemented to validate the FY-2C derived LST. The results indicate that a significant correlation exists between the two datasets, with the coefficient of correlation, varying from 0.72 to 0.95, root mean square error(RMSE) ranging from 0.44 to 3.87 K, and the average RMSE being 1.90 K. The FY-2C derived LST exhibits a consistent variation with the measured soil temperature, and the coefficient of correlation reaches 0.69.

Key wordstraditional residential settlements    infrastructure and environmental management    multi-source spatial data acquisition and storage technology    mobile geographic information system and internet of things    mobile tourism self-service
收稿日期: 2014-05-27      出版日期: 2015-07-23
:  TP751.1  
基金资助:

国家自然科学基金项目"基于静止气象卫星数据的区域尺度土壤水分反演方法研究"(编号: 41271379)和中国科学院重点部署项目"黄河源区冻土变化的水文效应"(编号: KZZD-EW-13)共同资助。

通讯作者: 宋小宁(1975- ),女,副教授,硕士生导师,主要从事定量遥感方面的研究。Email: songxn@ucas.ac.cn。
作者简介: 王亚维(1991- ),女,硕士研究生,主要从事定量遥感方面的研究。Email: wangyawei13@mails.ucas.ac.cn。
引用本文:   
王亚维, 宋小宁, 唐伯惠, 李召良, 冷佩. 基于FY-2C数据的地表温度反演验证——以黄河源区玛曲为例[J]. 国土资源遥感, 2015, 27(4): 68-72.
WANG Yawei, SONG Xiaoning, TANG Bohui, LI Zhaoliang, LENG Pei. Validation of FY-2C derived land surface temperature over the source region of the Yellow River: A case study of Maqu County. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 68-72.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2015.04.11      或      https://www.gtzyyg.com/CN/Y2015/V27/I4/68

[1] 徐希孺, 柳钦火, 陈家宜.遥感陆面温度[J].北京大学学报:自然科学版, 1998, 34(2/3):248-253. Xu X R, Liu Q H, Chen J Y.Remote sensing of land surface temperature[J].Acta Scientiarum Naturalium Universitatis Pekinensis, 1998, 34(2/3):248-253.

[2] Price J C.Land surface temperature measurements from the split window channels of the NOAA7/AVHRR[J].Journal of Geophysical Research, 1984, 89(D5):7231-7237.

[3] 祝善友, 张桂欣, 尹球.地表温度热红外遥感反演的研究现状及其发展趋势[J].遥感技术与应用, 2006, 21(5):420-425. Zhu S Y, Zhang G X, Yin Q.Actualities and development trends of the study on land surface temperature retrieving from thermal infrared remote sensing[J].Remote Sensing Technology and Application, 2006, 21(5):420-425.

[4] 甘甫平, 陈伟涛, 张绪教, 等.热红外遥感反演陆地表面温度研究进展[J].国土资源遥感, 2006, 18(1):6-11.doi:10.6046/gtzyyg.2006.01.02. Gan F P, Chen W T, Zhang X J, et al.The progress in the study of thermal infrared remote sensing for retrieving land surface temperature[J].Remote Sensing for Land and Resources, 2006(1):6-11.doi:10.6046/gtzyyg.2006.01.02.

[5] Becker F.The impact of spectral emissivity on the measurement of land surface temperature from a satellite[J].International Journal of Remote Sensing, 1987, 8(10):1509-1522.

[6] 李健.长白山地区地表温度反演研究[D].长春:吉林大学, 2005. Li J.A Study of Land Surface Temperature Retrieval for the Region of Changbai Mountain of China[D].Changchun:Jilin University, 2005.

[7] Vidal A.Atmospheric and emissivity correction of land surface temperature measured from satellite using ground measurements of satellite data[J].International Journal of Remote Sensing, 1991, 12(12):2449-2460.

[8] 柳钦火, 徐希孺, 陈家宜.遥测地表温度与比辐射率的迭代反 演方法——理论推导与数值模拟[J].遥感学报, 1998, 2(1):1-9. Liu Q H, Xu X R, Chen J Y.The retrieval of land surface temperature and emissivity by remote sensing data:Theory and digital simulation[J].Journal of Remote Sensing, 1998, 2(1):1-9.

[9] Qin Z H, Karnieli A.Progress in the remote sensing of land surface temperature and ground emissivity using NOAA-AVHRR data[J].International Journal of Remote Sensing, 1999, 20(12):2367- 2393.

[10] Gao C X, Tang B H, Wu H, et al.A generalized split-window algorithm for land surface temperature estimation from MSG-2/SEVIRI data[J].International Journal of Remote Sensing, 2013, 34(12):4182-4199.

[11] Qian Y G, Qiu S, Wang N, et al.Land surface temperature and emissivity retrieval from time-series mid-infrared and thermal infrared data of SVISSR/FY-2C[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3):1552-1563.

[12] Trigo I F, Monteiro I T, Olesen F, et al.An Assessment of remotely sensed land surface temperature[J].Journal of Geophysical Research:Atmospheres(1984-2012), 2008, 113(D17):D17108.

[13] Trigo I F, Peres L F, DaCamara C C, et al.Thermal land surface emissivity retrieved from SEVIRI/Meteosat[J].IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(2):307-315.

[14] Tang B H, Bi Y Y, Li Z L, et al.Generalized split-window algorithm for estimate of land surface temperature from Chinese geostationary FengYun meteorological satellite(FY-2C) data[J].Sensors, 2008, 8(2):933-951.

[15] 张霄羽, 王娇.基于静止气象卫星数据的地表温度遥感估算[J].遥感技术与应用, 2013, 28(1):12-17. Zhang X Y, Wang J.Estimation of land surface temperature using geostationary meteorological satellite data[J].Remote Sensing Technology and Application, 2013, 28(1):12-17.

[16] 国家卫星气象中心.风云卫星遥感数据服务网[EB/OL].[2014-05-04].http://www.nsmc.cma.gov.cn/NSMC/Home/Index.html. National Satellite Meteorological Center.FENGYUN Satellite Data Center[EB/OL].[2014-05-04].http://www.nsmc.cma.gov.cn/NSMC/Home/Index.html.

[17] 胡菊旸.风云卫星地表温度反演算法研究[D].北京:中国气象科学研究院, 2012. Hu J Y.The Study of Algorithms for Land Surface Temperature Retrieval from Feng Yun Satellite Data[D].Beijing:Chinese Academy of Meteorological Sciences, 2012.

[18] Wan Z M, Dozier J.A generalized split-window algorithm for retrieving land-surface temperature from space[J].IEEE Transections on Geoscience and Remote Sensing 1996, 34(4):892-905.

[19] Lagouarde J P, Dayau S, Moreau P, et al.Directional anisotropy of brightness surface temperature over vineyards:Case study over the medoc region(SW France)[J].IEEE Geoscience and Remote Sensing Letters, 2014, 11(2):574-578.

[20] Lagouarde J P, Hénon A, Kurz B, et al.Modelling daytime thermal infrared directional anisotropy over Toulouse city centre[J].Remote Sensing of Environment, 2010, 114(1):87-105.

[21] Ren H Z, Yan G J, Chen L, et al.Angular effect of MODIS emissivity products and its application to the split-window algorithm[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(4):498-507.

[1] 梁冰, 魏海洋, 白玉龙, 刘建华, 杜明义. 传统民居聚落智能化管理与移动旅游自助服务系统研究[J]. 国土资源遥感, 2015, 27(3): 188-193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发