Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (2): 132-137    DOI: 10.6046/gtzyyg.2018.02.18
     技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于GRACE的华北平原地下水储量时空变化分析
束秋妍1,2(), 潘云1,2, 宫辉力1,2, 黄志勇1,2, 郑龙群1,2
1.首都师范大学资源环境与旅游学院,北京 100048
2.首都师范大学城市环境过程与数字模拟国家重点实验室培育基地,北京 100048
Spatiotemporal analysis of GRACE-based groundwater storage variation in North China Plain
Qiuyan SHU1,2(), Yun PAN1,2, Huili GONG1,2, Zhiyong HUANG1,2, Longqun ZHENG1,2
1.College of Resource and Environment and Tourism, Capital Normal University, Beijing 100048, China
2.Base of the State Key Laboratory of Urban Environmental Process and Digital Modeling,Capital Normal University, Beijing 100048, China
全文: PDF(2799 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

利用GRACE(gravity recovery and climate experiment)重力卫星数据反演2003—2015年间华北平原地下水储量变化,并在此基础上利用经验正交函数(empirical orthogonal function,EOF)分析方法对结果进行了时空特征分析。研究表明,华北平原地下水储量变化可以分解为3个主要模态,其对总体变化的解释率达到96.35%。其中,第1模态解释率约为80%,空间变化一致,表现出多年趋势性减少与年内季节性变化相结合的特征,推测可能由研究区内地下水开采和年内降水分布共同作用导致; 第2和第3模态分别表现出东北—西南和西北—东南2种变化相反的空间格局,对总体变化的解释率分别约为12%和5%,在时间上没有明显的趋势性变化,推测可能主要受沿海-内陆、山前-平原的水循环和水文地质条件控制。研究有助于进一步了解华北平原地下水储量变化的时空特征与驱动机制。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
束秋妍
潘云
宫辉力
黄志勇
郑龙群
关键词 地下水储量变化华北平原GRACEEOF    
Abstract

GWSA (groundwater storage anomaly) data of North China Plain from 2003 to 2015 were estimated from terrestrial water storage change (TWSC) data retrieved by monthly GRACE (gravity recovery and climate experiment). The EOF (empirical orthogonal function) method was applied to analyzing the GWSA, and it is shown that cumulative contribution rate of the first three EOF modes reached up to 96.35%. The explanation rate of the total variance of first mode reached about 80%. It is shown that GWSA in the North China Plain behaved consistently descending in the whole region with obvious seasonal fluctuations, caused by groundwater exploitation and precipitation. The second and third mode, with an explanation rate of about 12% and 5%, showed that spatial pattern in northeast-southwest direction and that in northwest-southeast direction were obviously opposite. However, no significant temporal diversification was found, presumably mainly controlled by water cycle under the coastal-inland, piedmont-plain and hydrogeological conditions. This study helps to further understand the spatiotemporal characteristics and drive mechanism of groundwater change in North China Plain.

Key wordsground water storage variations    North China Plain    GRACE    EOF
收稿日期: 2016-09-20      出版日期: 2018-05-30
:  TV211.1  
基金资助:北京自然科学基金项目“变化环境下北京平原区降水入渗系数取值研究”(编号: 8152012);国家自然科学基金项目“不同植被覆盖条件下产生地下水净补给的年降水量阈值研究”(编号: 41101033);“北京地区地面沉降三维形变及演化机理研究”(编号: 41130744)
引用本文:   
束秋妍, 潘云, 宫辉力, 黄志勇, 郑龙群. 基于GRACE的华北平原地下水储量时空变化分析[J]. 国土资源遥感, 2018, 30(2): 132-137.
Qiuyan SHU, Yun PAN, Huili GONG, Zhiyong HUANG, Longqun ZHENG. Spatiotemporal analysis of GRACE-based groundwater storage variation in North China Plain. Remote Sensing for Land & Resources, 2018, 30(2): 132-137.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.02.18      或      https://www.gtzyyg.com/CN/Y2018/V30/I2/132
Fig.1  研究区位置示意图
Fig.2  GRACE反演和实测GWS变化时间序列
周年GWS均值 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年 均值 方差
GRACE反演值 126.5 189.2 136.2 88.1 108.2 106.2 124.6 172.5 164.5 135.1 33.7
观测井实测值 182.1 148.6 173.8 111.1 152.4 142.0 145.7 150.7 136.7 149.2 20.5
Tab.1  GRACE反演和实测GWS年度振幅变化
参数 EOF模态
1 2 3 4 5
方差贡献率 79.93 11.76 4.66 1.68 0.81
累计 79.93 91.69 96.35 98.03 98.84
Tab.2  华北平原地下水储量变化EOF分解后前5个模态累积方差贡献率
Fig.3  华北平原地下水储量变化EOF分解特征根
Fig.4  2003—2015年间华北平原GWS变化3个特征向量分析
[1] 张利平, 夏军, 胡志芳 . 中国水资源状况与水资源安全问题分析[J]. 长江流域资源与环境, 2009,18(2):116-120.
doi: 10.3969/j.issn.1004-8227.2009.02.004
Zhang L P, Xia J, Hu Z F . Situation and problem analysis of water resource security in China[J]. Resources and Environment in the Yangtze Basin, 2009,18(2):116-120.
[2] 刘昌明 . 建设节水型社会缓解地下水危机[J].中国水利, 2007(15):10-13.
doi: 10.3969/j.issn.1000-1123.2007.15.005
Liu C M . Building water-saving society and alleviating groundwater crisis[J].China Water Resources, 2007(15):10-13.
[3] Yeh P J F, Swenson S C, Famiglietti J S, et al.Famiglietti J S,et al.Remote sensing of groundwater storage changes in Illinois using the gravity recovery and climate experiment (GRACE)[J].Water Resources Research, 2006, 42(12)W 12203: 1-7.doi: 10.1029/2006WR005374.
doi: 10.1029/2006WR005374
[4] Feng W, Zhong M, Lemoine J M , et al. Evaluation of groundwater depletion in North China using the gravity recovery and climate experiment (GRACE) data and ground-based measurements[J]. Water Resources Research, 2013,49(4):2110-2118.
doi: 10.1002/wrcr.20192
[5] 张光辉, 费宇红, 刘春华 , 等. 华北平原灌溉用水强度与地下水承载力适应性状况[J]. 农业工程学报, 2013,29(1):1-10.
doi: 10.3969/j.issn.1002-6819.2013.01.001
Zhang G H, Fei Y H, Liu C H , et al. Adaptation between irrigation intensity and groundwater carrying capacity in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(1):1-10.
[6] Awange J L, Gebremichael M, Forootan E , et al. Characterization of Ethiopian mega hydrogeological regimes using GRACE,TRMM and GLDAS datasets[J]. Advances in Water Resources, 2014,74:64-78.
doi: 10.1016/j.advwatres.2014.07.012
[7] Kang K X, Li H, Peng P , et al.Low-frequency variability of terrestrial water budget in China using GRACE satellite measurements from 2003 to 2010[J]. Geodesy and Geodynamics, 2015,6(6):444-452.
doi: 10.1016/j.geog.2015.12.001
[8] 阎福礼, 李书明, 王世新 , 等. 基于EOF方法长江流域2002—2013年GRACE水储量时空变化研究[J]. 长江流域资源与环境, 2015,24(S1):131-137.
Yan F L, Li S M, Wang S X , et al. Temporal and spatial variations research of GRACE water storage changes over the Yangtze River Bisin[J]. Resources and Environment in the Yangtze Basin, 2015,24(S1):131-137.
[9] 张兆吉, 雒国中, 王昭 , 等. 华北平原地下水资源可持续利用研究[J]. 资源科学, 2009,31(3):355-360.
Zhang Z J, Luo G Z, Wang Z , et al. Study on sustainable utilization of groundwater in North China Plain[J]. Resources Science, 2009,31(3):355-360.
[10] 魏凤英 . 全国夏季降水区域动态权重集成预报试验[J]. 应用气象学报, 1999,10(4):402-409.
doi: 10.3969/j.issn.1001-7313.1999.04.003
Wei F Y . Regional consensus forecast method with dynamic weighting for summer precipitation over China[J]. Quarterly Journal of Applied Meteorlolgy, 1999,10(4):402-409.
[11] 施能, 章爱国, 余锦华 . 气象学中使用统计检验的几个重要注记[J]. 气象科学, 2009,29(5):670-673.
Shi N, Zhang A G, Yu J H , Some important problems of the statistics test in meteorology[J]. Scientia Meteorologica Sinica, 2009,29(5):670-673.
[12] North G R, Bell T L, Cahalan R F , et al. Sampling errors in the estimation of empirical orthogonal functions[J]. Monthly Weather Review, 1982,110(7):699-699.
doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
[13] Huang Z Y, Pan Y, Gong H L , et al. Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain[J]. Geophysical Research Letters, 2015,42(6):1791-1799.
doi: 10.1002/2014GL062498
[1] 于海若, 宫辉力, 陈蓓蓓, 周超凡. 新水情下利用InSAR-GRACE卫星的新兴风险预警与城市地下空间安全展望[J]. 国土资源遥感, 2020, 32(4): 16-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发