Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (3): 87-94    DOI: 10.6046/gtzyyg.2019.03.12
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
LBV变换在国产ZY-3卫星影像中应用研究探讨
卫宝泉1,2, 索安宁2, 李颖1, 赵建华2
1. 大连海事大学航海学院,大连 116026
2. 国家海洋环境监测中心,大连 116023
Research on the application of LBV transformation in domestic ZY-3 satellite images
Baoquan WEI1,2, Anning SUO2, Ying LI1, Jianhua ZHAO2
1. College of Navigation, Dalian Maritime University, Dalian 116026, China
2. National Marine Environmental Monitoring Center, Dalian 116023, China
全文: PDF(2805 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

根据国产资源三号(ZY-3)卫星遥感影像光谱特征,提出并推导适用于ZY-3遥感影像的LBV变换公式,探讨该方法在提高国产ZY-3卫星影像质量的可行性。首先,针对ZY-3遥感影像特点,选择9类典型地物光谱信息,通过回归分析求解回归系数; 然后,根据影像典型地物空间(裸地、水体、植被)、色彩空间(红、绿、蓝)及LBV变量空间(地物总体辐射水平、可见光—近红外辐射平衡、辐射变换矢量)之间特点计算推导ZY-3卫星影像的L,B,V这3个分量; 最后,利用福建省宁德市ZY-3遥感影像进行实验,定量分析评价实验结果。结果表明: ①从目视效果看,相比原始影像,变换后影像更加清晰,层次感更强,细节信息也更为丰富,从而更有利于后续地物的判定、识别; ②该方法得到的影像信息熵为6.21,平均梯度为4.71,偏差系数为0.46,变换后遥感影像质量较好; ③该方法对ZY-3遥感影像分类的总体精度最高达89.71%,Kappa系数最高为0.875 3,分类精度较高。因此,该方法能很好地提高ZY-3遥感影像质量,可用于ZY-3遥感影像处理及后续信息提取工作。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卫宝泉
索安宁
李颖
赵建华
关键词 LBV变换图像变换高空间分辨率ZY-3卫星精度分析    
Abstract

According to the spectral features of domestic ZY-3 remote sensing images, the formula of LBV transformation for ZY-3 is proposed and deduced, and the feasibility of improving the quality of ZY-3 remote sensing images is testified. At first, based on the characteristics of ZY-3 remote sensing images, the spectral information of nine types of typical ground features were selected, and regression coefficients were used to calculate regression coefficients. Then, the three components of L, B, V of ZY-3 satellite images were calculated according to the characteristics of the typical ground features space (bare land, water body, vegetation), color space (red, green, blue) and the space of LBV variables (the general radiance level of the ground objects, the visiable - infrared radiation balance, the band radiance variation vector). Finally, the experiments of ZY-3 remote sensing image in Ningde City of Fujian Province were carried out, and quantitative analysis was conducted to evaluate the experimental results. Firstly, the results show that, in the aspect of the visual effects, compared with the original image, the transformed image is more clear, and the details are more abundant, and thus can contribute more to the determination and identification of subsequent features. Secondly, through the LBV transformation, the image information entropy is 6.21, the average gradient is 4.71, the deviation coefficient is 0.46, and the quality of the remote sensing image is better than other transformation methods. Thirdly, by classifying the LBV image, the overall accuracy is up to 89.71%, and the Kappa coefficient is the highest, reaching 0.875 3. The classification accuracy is higher than that of other transformation methods. Therefore, The LBV transformation can improve the quality of ZY-3 remote sensing image, and it can be applied to ZY-3 remote sensing image processing and information extraction.

Key wordsLBV transformation    image transformation    high spatial resolution    ZY-3 satellite    accuracy analysis
收稿日期: 2018-06-07      出版日期: 2019-08-30
:  TP79  
基金资助:国家自然科学基金面上项目“海上搜寻目标光谱探测追踪研究”(41571336);国家自然科学基金项目“基于激光荧光的冰区船舶溢油识别研究”共同资助(51609032)
作者简介: 卫宝泉(1980-),男,工程师,博士研究生,主要从事遥感图像处理及信息提取等方向的研究。Email: bqwei2000@163.com.。
引用本文:   
卫宝泉, 索安宁, 李颖, 赵建华. LBV变换在国产ZY-3卫星影像中应用研究探讨[J]. 国土资源遥感, 2019, 31(3): 87-94.
Baoquan WEI, Anning SUO, Ying LI, Jianhua ZHAO. Research on the application of LBV transformation in domestic ZY-3 satellite images. Remote Sensing for Land & Resources, 2019, 31(3): 87-94.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.03.12      或      https://www.gtzyyg.com/CN/Y2019/V31/I3/87
地点 经度 纬度 日期 地点 经度 纬度 日期 地点 经度 纬度 日期
大连 E123.2° N39.4° 20160616 沧州 E119.2° N39.8° 20160625 舟山 E122.6° N30.3° 20170828
盘锦 E120.9° N40.6° 20170704 天津 E118.2° N39.4° 20170604 泉州 E118.8° N24.7° 20160727
唐山 E119.0° N39.0° 20160625 南通 E120.9° N32.7° 20170803 莆田 E119.2° N25.4° 20170712
滨州 E118.7° N37.8° 20160625 连云港 E119.3° N34.6° 20170901 珠海 E113.7° N22.3° 20161016
青岛 E119.7° N35.4° 20160517 宁波 E121.7° N29.1° 20160621 汕头 E116.4° N23.5° 20171025
湛江 E110.9° N21.5° 20170821 防城港 E108.5° N21.5° 20160921 北海 E109.7° N21.5° 20160709
三亚 E109.7° N18.5° 20160606 海口 E110.2° N19.9° 20160709 文昌 E111.0° N19.6° 20170831
Tab.1  ZY-3卫星影像信息
Fig.1  ZY-3影像9类地物光谱曲线
Fig.2  LBV变换技术流程
Fig.3  9类地物光谱二次回归曲线
Fig.4  9类地物线性回归曲线
Fig.5  建筑用地和林地二次回归曲线及残差
Fig.6  LBV变换图像
方法 信息熵 平均梯度 偏差系数
原始影像 5.32 3.69
Brovery 3.72 2.87 2.14
PCA 5.11 3.37 1.24
G-S 5.54 3.84 1.03
CNSS 5.42 3.37 0.44
Pan-sharpening 6.18 4.35 0.96
本文方法 6.21 4.71 0.46
Tab.2  ZY-3影像质量评价指标
方法 最大似然法 支持向量机 神经网络
总体精
度/%
Kappa
系数
总体精
度/%
Kappa
系数
总体精
度/%
Kappa
系数
原始影像 68.42 0.579 2 72.40 0.630 2 71.12 0.621 0
Brovery 71.10 0.620 5 73.57 0.651 3 73.47 0.648 1
PCA 76.05 0.673 7 79.30 0.743 4 80.19 0.746 8
G-S 74.21 0.664 2 77.56 0.727 7 84.76 0.821 6
CNSS 78.30 0.734 1 82.45 0.778 0 83.10 0.805 7
Pan-shar-pening 81.39 0.751 0 86.87 0.840 5 87.06 0.853 4
本文方法 84.47 0.816 3 88.76 0.866 7 89.71 0.875 3
Tab.3  ZY-3影像分类精度
[1] 薛东剑, 何政伟, 仇文侠 , 等. 基于EML与SML实现遥感影像融合质量评价及应用研究[J].遥感信息, 2009(6):63-67.
Xue D J, He Z W, Qiu W X , et al. Quality assessment and application of remote sensing image fusion based on EML and SML[J].Remote Sensing Information, 2009(6):63-67.
[2] 吴连喜, 王茂新 . 一种光谱保持型的图像融合方法[J]. 遥感学报, 2004,8(4):356-361.
doi: 10.11834/jrs.20040410
Wu L X, Wang M X . A new method of RS image fusion preserving spectrum[J]. Journal of Remote Sensing, 2004,8(4):356-361.
[3] 陆冬华, 赵英俊 . 基于改进型Brovery算法的高光谱数据融合技术[J]. 世界核地质科学, 2006,23(3):177-180.
Lu D H, Zhao Y J . Fusing Hyperion and Pan data by an improved Brovery algorithm[J]. World Nuclear Geoscience, 2006,23(3):177-180.
[4] 张生, 赵春三, 杨桄 , 等. 多光谱与高分辨率图像融合方法比较研究[J].遥感信息, 2007(5):56-60.
Zhang S, Zhao C S, Yang G , et al. Study on fusion algorithm for multi-spectral image and high resolution image[J].Remote Sensing Information, 2007(5):56-60.
[5] Yesou H, Besnus Y, Rolet Y . Extraction of spectral information from Landsat TM data and merger with SPOT panchromatic imagery:A contribution to the study of geological structures[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1993,48(5):23-36.
[6] Zhang Y . Problems in the fusion of commercial high-resolution satellite as well as Landsat 7 ETM+ images and initial solutions [C]//International Archives of Photogrammetry and Remote Sensing(IAPRS) “Geospatial Theory,Processing and Applications”, 2002.
[7] Chien C L, Tsai W H . Image fusion with no gamut problem by improved nonlinear IHS transforms for remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(1):651-663.
[8] Schetselaar E M . On preserving spectral balance in image fusion and its advantages for geological image interpretation[J]. Photogrammetric Engineering and Remote Sensing, 2001,67(8):925-934.
[9] Zhang Y . Highlight article:Understanding image fusion[J]. Photogrammetric Engineering and Remote Sensing, 2004,70(6):657-661.
[10] Kempeneers P, Sedano F, Seebach L , et al. Data fusion of different spatial resolution remote sensing images applied to forest-type mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(12):4977-4986.
[11] 胡洋, 习晓环, 王城 , 等. Pleiades卫星影像融合方法与质量评价[J]. 遥感技术与应用, 2014,29(3):476-481.
Hu Y, Xi X H, Wang C , et al. Study on fusion methods and quality assessment of Pleiades data[J]. Remote Sensing Technology and Application, 2014,29(3):476-481.
[12] 许开宇, 李双一 . 基于小波变换的图像融合算法的实现[J]. 红外技术, 2007,29(8):455-458.
Xu K Y, Li S Y . An images fusion algorithm based on Wavelet transform[J]. Infrared Technology, 2007,29(8):455-458.
[13] Zhang Y, Mishra P K . A review and comparison of commercially available pan-sharpening techniques for high resolution satellite image fusion [C]//2012 IEEE International Geoscience and Remote Sensing Symposium.Munich:IEEE, 2012.
[14] Luo B, Khan M M, Bienvenu T , et al. Decision-based fusion for pan-sharpening of remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2013,10(1):19-23.
[15] 姜红艳, 邢立新, 梁立恒 , 等. PanSharpening自动融合算法及应用研究[J]. 测绘与空间地理信息, 2008,31(5):73-75.
Jiang H Y, Xing L X, Liang L H , et al. Study on PanSharpening auto-fusion arithmetic and application[J]. Geomatics and Spatial Information Technology, 2008,31(5):73-75.
[16] Ghanbari Z, Sahebi M R . Improved HIS algorithm for fusing high resolution satellite images of urban areas[J]. Journal of the Indian Society of Remote Sensing, 2014,42(4):689-699.
[17] 刘军, 邵振峰 . 快速离散Curvelet变换和HIS变换集成的遥感影像融合方法[J]. 测绘科学, 2012,37(1):121-124.
Liu J, Shao Z F . An integrated image fusion method based on HIS and fast discrete Curvelet transform[J]. Science of Surveying and Mapping, 2012,37(1):121-124.
[18] 杨桄, 童涛, 陆松岩 , 等. 基于多特征的红外与可见光图像融合[J]. 光学精密工程, 2014,22(2):489-496.
Yang G, Tong T, Lu S Y , et al. Fusion of infrared and visible images based on multi-features[J]. Optics and Precision Engineering, 2014,22(2):489-496.
[19] 张惊雷, 赵俄英 . 基于NSCT的红外与可见光图像融合方法[J]. 激光与红外, 2013,43(3):319-323.
Zhang J L, Zhao E Y . Fusion method for infrared and visible light images based on NSCT[J]. Laser and Infrared, 2013,43(3):319-323.
[20] Zeng Z Y . A new method of data transformation for satellite images:I.Methodology and transformation equations for TM images[J]. International Journal of Remote Sensing, 2007,28(18):4095-4124.
[21] Zeng Z Y . A new method of data transformation for satellite images:II.Transformation equations for SPOT,NOAA,IKONOS,Quick Bird,ASTER,MSS and other images and application[J]. International Journal of Remote Sensing, 2007,28(18):4125-4155.
[22] 栗敏光, 范洪冬, 邓喀中 . 基于LBV变换的TM数据水体提取新方法[J]. 测绘科学, 2010,35(3):138-139.
Li M G, Fan H D, Deng K Z . New methods for water body extraction from TM data based on LBV transformation[J]. Science of Surveying and Mapping, 2010,35(3):138-139.
[23] 王贺, 陈劲松, 余晓敏 . HJ数据的LBV变换及其在面向对象分类中的应用[J]. 遥感技术与应用, 2013,28(6):1020-1026.
Wang H, Chen J S, Yu X M . LBV transformation for HJ-1B data and application in object-oriented classification[J]. Remote Sensing Technology and Application, 2013,28(6):1020-1026.
[24] 彭笃明, 张安定, 李德一 , 等. 基于LBV变换的遥感影像多步骤分类方法研究[J]. 测绘科学, 2008,33(3):56-58.
Peng D M, Zhang A D, Li D Y , et al. Study on multi-step classification of remote sensing image based on LBV transformation[J]. Science of Surveying and Mapping, 2008,33(3):56-58.
[25] 张成雯, 唐家奎, 米素娟 , 等. 中巴02B卫星多光谱影像中LBV数据变换方法研究[J]. 地理与地理信息科学, 2011,27(3):21-25.
Zhang C W, Tang J K, Mi S J , et al. Research on new LBV data transformation method for CBERS-02B multi-spectral images[J]. Geography and Geo-Information Science, 2011,27(3):21-25.
[26] 张成雯, 唐家奎, 米素娟 , 等. 基于LBV数据变换方法的海岸带多光谱影像分类方法研究[J]. 地理与地理信息科学, 2010,26(4):53-56.
Zhang C W, Tang J K, Mi S J , et al. Research and evaluation of coastal zone multi-spectral image classification based on LBV transformation[J]. Geography and Geo-Information Science, 2010,26(4):53-56.
[27] 孟育红, 刘勇 . ALOS全色与多光谱影像融合方法比较[J]. 地理空间信息, 2012,10(5):99-102.
Meng Y H, Liu Y . Comparison of image fusion methods for ALOS panchromatic and multi-spectral images[J]. Geospatial Information, 2012,10(5):99-102.
[1] 张春森, 吴蓉蓉, 李国君, 崔卫红, 冯晨轶. 面向对象的高空间分辨率遥感影像箱线图变化检测方法[J]. 国土资源遥感, 2020, 32(2): 19-25.
[2] 汪洁, 殷亚秋, 于航, 蒋存浩, 万语. 基于RS和GIS的浙江省矿山地质环境遥感监测[J]. 国土资源遥感, 2020, 32(1): 232-236.
[3] 刘玉锋, 潘英, 李虎. 基于高空间分辨率遥感数据的天山云杉树冠信息提取研究[J]. 国土资源遥感, 2019, 31(4): 112-119.
[4] 姚丙秀, 黄亮, 许艳松. 一种结合超像素和图论的高空间分辨率遥感影像分割方法[J]. 国土资源遥感, 2019, 31(3): 72-79.
[5] 黄惠, 郑雄伟, 孙根云, 郝艳玲, 张爱竹, 容俊, 马红章. 基于引力自组织神经网络的震害遥感影像分类[J]. 国土资源遥感, 2019, 31(3): 95-103.
[6] 樊宪磊, 阎宏波, 瞿瑛. 基于HJ-1A/B CCD地表反照率估算方法比较与验证[J]. 国土资源遥感, 2019, 31(3): 123-131.
[7] 郑艺, 林懿琼, 周建, 甘伟修, 林广旋, 许方宏, 林光辉. 基于资源三号的雷州半岛红树林种间分类研究[J]. 国土资源遥感, 2019, 31(3): 201-208.
[8] 梁林林, 江利明, 周志伟, 陈玉兴, 孙亚飞. 无人机遥感影像面向对象分类的冻土热融滑塌边界提取[J]. 国土资源遥感, 2019, 31(2): 180-186.
[9] 周阳, 张云生, 陈斯飏, 邹峥嵘, 朱耀晨, 赵芮雪. 基于DCNN特征的建筑物震害损毁区域检测[J]. 国土资源遥感, 2019, 31(2): 44-50.
[10] 张伟, 齐建伟, 陈颖, 韩旭. 多源国产高分卫星联合区域网平差精度分析研究[J]. 国土资源遥感, 2019, 31(1): 125-132.
[11] 吕野, 胡翔云. 利用增量式马尔科夫随机场分割提取高空间分辨率遥感影像道路[J]. 国土资源遥感, 2018, 30(3): 76-82.
[12] 孙娜, 高志强, 王晓晶, 罗志东. 基于高分遥感影像的黄土高原地区水体高精度提取[J]. 国土资源遥感, 2017, 29(4): 173-178.
[13] 尹峰, 曹丽琴, 梁鹏. 改进的Welsh颜色迁移算法在GF-2图像融合中的应用[J]. 国土资源遥感, 2017, 29(4): 126-131.
[14] 杨青山, 张华. 融合像元形状和光谱信息的高分遥感图像分类新方法[J]. 国土资源遥感, 2016, 28(4): 64-70.
[15] 杨文治, 张友静, 尹新沆, 王金龙. 面向GF-1影像的比值建筑用地指数构建[J]. 国土资源遥感, 2016, 28(1): 35-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发