Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (4): 8-15    DOI: 10.6046/gtzyyg.2020.04.02
  综述 本期目录 | 过刊浏览 | 高级检索 |
定量遥感若干前沿方向探讨
秦其明1,2(), 陈晋3, 张永光4, 任华忠1, 吴自华1, 张赤山3, 吴霖升4, 刘见礼5
1.北京大学地球与空间科学学院,北京 100871
2.自然资源部地理信息系统技术创新中心,北京 100871
3.北京师范大学地表过程与资源生态国家重点实验室,北京 100875
4.南京大学国际地球系统科学研究所,南京 210023
5.中国科学院地理科学与资源研究所,北京 100101
A discussion on some frontier directions of quantitative remote sensing
QIN Qiming1,2(), CHEN Jin3, ZHANG Yongguang4, REN Huazhong1, WU Zihua1, ZHANG Chishan3, WU Linsheng4, LIU Jianli5
1. School of Earth and Space Science, Peking University, Beijing 100871, China
2. Technology Innovation Center for Geographic Information System Technology, Ministry of Natural Resources, Beijing 100871, China
3. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
4. International Institute for Earth System Science, Nanjing University, Nanjing 210023, China
5. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
全文: PDF(1105 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

自主创新能力的提高,关键在人才,核心在教育。为了培养“定量遥感”领域高素质的创新人才,2020年北京大学第十七届“定量遥感”暑期课程班结合听课学员关注的定量遥感前沿问题,举办了研究生线上学术讨论。学术讨论针对“定量遥感”理论、方法技术和应用中广泛关注的学术问题,举办了4场学术讨论,分别讨论了辐射传输机理、高光谱遥感混合像元分解、植被荧光遥感和无人机定量遥感应用与服务等4个方向的前沿进展。其中,“辐射传输机理”学术讨论主要从麦克斯韦方程组出发,讨论了用微观物理学阐释辐射传输理论的进展状况以及目前存在的局限性; “高光谱遥感混合像元分解”学术讨论主要聚焦在端元变异性研究的2个方面,即针对同一端元类别内的光谱变异性和不同端元类别之间的光谱相似性的讨论,深入探讨了高光谱遥感混合像元如何消除解混误差的理论与方法; “植被荧光遥感”学术讨论主要讨论了日光诱导叶绿素荧光(solar-induced chlorophyll fluorescence,SIF)遥感的应用进展,SIF从叶片内激发到传感器接收的过程及其作用机理,重点针对其中5个主要问题进行了深入讨论; “无人机定量遥感应用与服务”学术讨论围绕无人机定量遥感和应用服务等问题开展了深入讨论,普遍认为无人机定量遥感应用与服务在未来具有广阔前景。每场学术讨论由一名研究生作主题发言,参加人员围绕该主题申请发言,展开讨论与质疑,并就相关进展阐述个人观点或补充相关研究进展信息,主持人作总结发言。学术讨论通过bilibili网站在线直播,吸引了众多感兴趣的研究生和其他人员参与,拓展了定量遥感知识的传播,深化了对讨论问题的认识。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦其明
陈晋
张永光
任华忠
吴自华
张赤山
吴霖升
刘见礼
关键词 线上学术讨论辐射传输机理混合像元分解植被荧光遥感无人机定量遥感    
Abstract

The key to improving the ability of independent innovation lies in talents and education. In order to cultivate high-quality innovative talents in the field of “quantitative remote sensing”, this summer course held an academic salon for graduate students in combination with the frontier issues of quantitative remote sensing that the trainees were concerned about. The academic salon held four academic salons aiming at the academic problems in the theory, method, technology and application of quantitative remote sensing. The mechanism of radiation transfer, the decomposition of hyperspectral remote sensing mixed pixels, the application and service of UAV quantitative remote sensing were discussed. Among them, the academic salon of “radiation transfer mechanism” mainly discussed the progress and limitations of radiation transfer theory from Maxwell’s equations to microcosmic physics. “Hyperspectral remote sensing mixed pixel decomposition” academic salon mainly focused on two aspects of endmember variability research, namely, the discussion of spectral variability within the same endmember category and the spectral similarity between different endmember categories. Participants deeply discussed the theory and method of how to eliminate the unmixing error of hyperspectral remote sensing mixed pixel. The “vegetation fluorescence remote sensing” academic salon mainly discussed the application progress of solar-induced chlorophyll fluorescence (SIF) remote sensing, the process and mechanism of SIF excitation from leaf to sensor and its mechanism. Participants discussed five main issues in depth. “UAV quantitative remote sensing application and service” academic salon focused on UAV quantitative remote sensing and multi aircraft cooperative networking earth observation and remote sensing application service in complex scenes. Participants believed that UAV quantitative remote sensing application and service has broad prospects in the future. In each academic salon, a graduate student made a keynote speech. The participants would apply for a speech around the topic, discuss and question, and elaborate personal views or supplement relevant research progress information on relevant progress. The host would make a summary speech. The online academic salon provided a new academic platform for graduate students to exchange and discuss the frontier progress of quantitative remote sensing. The academic salon attracted many interested graduate students and other personnel to participate through live broadcast of bilibili station, and expanded the dissemination of quantitative remote sensing knowledge.

Key wordsonline academic salon    radiation transmission mechanism    mixed pixel decomposition    vegetation fluorescence remote sensing    UAV quantitative remote sensing
收稿日期: 2020-09-03      出版日期: 2020-12-23
:  TP79  
基金资助:国家自然科学基金项目(41771371);国家自然科学基金项目(42071314)
作者简介: 秦其明(1955-),男,教授,主要从事定量遥感与地理信息系统研究。Email:qmqinpku@163.com
引用本文:   
秦其明, 陈晋, 张永光, 任华忠, 吴自华, 张赤山, 吴霖升, 刘见礼. 定量遥感若干前沿方向探讨[J]. 国土资源遥感, 2020, 32(4): 8-15.
QIN Qiming, CHEN Jin, ZHANG Yongguang, REN Huazhong, WU Zihua, ZHANG Chishan, WU Linsheng, LIU Jianli. A discussion on some frontier directions of quantitative remote sensing. Remote Sensing for Land & Resources, 2020, 32(4): 8-15.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.04.02      或      https://www.gtzyyg.com/CN/Y2020/V32/I4/8
[1] 曾亮, 金亚秋. 随机介质中的矢量辐射传输理论[J]. 物理学进展, 1990(1):57-99.
Zeng L, Jin Y Q. Vector radiative transfer theory in random media[J]. Progress in Physics, 1990(1):57-99.
[2] 金亚秋. 电磁散射和热辐射的遥感理论[M]. 北京: 科学出版社, 1993.
Jin Y Q. Remote sensing theory of electromagnetic scattering and thermal radiation[M]. Beijing: Science Press, 1993.
[3] Wendisch M, Yang P. Theory of atmospheric radiative transfer:A comprehensive introduction[J]. Contemporary Physics, 2012,53(6):506.
[4] Mishchenko M I. Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles:A microphysical derivation from statistical electromagnetics[J]. Applied Optics, 2002,41(33):7114-7134.
pmid: 12463259
[5] Mishchenko M I. Microphysical approach to polarized radiative transfer:Extension to the case of an external observation points[J]. Applied Optics, 2003,42(24):4963-4967.
pmid: 12952344
[6] Mishchenko M I. Maxwell’s equations,radiative transfer,and coherent backscattering:A general perspective[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006,101(3):540-555.
[7] Tsang L, Kong J A. Scattering of electromagnetic waves:Advanced topics[M]. New York:John Wiley and Sons,Inc., 2001.
[8] Doicu A, Mishchenko M I. Overview of methods for deriving the radiative transfer theory from the Maxwell equations.I:Approach based on the far-field Foldy equations[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018,220:123-139.
[9] Doicu A, Mishchenko M I. An overview of methods for deriving the radiative transfer theory from the Maxwell equations.II:Approach based on the Dyson and Bethe-Salpeter equations[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019,224:25-36.
doi: 10.1016/j.jqsrt.2018.10.032 pmid: 30713354
[10] Doicu A, Mishchenko M I. Electromagnetic scattering by discrete random media.III:The vector radiative transfer equation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019,236:106564.
[11] Somers B, Asner G P, Tits L, et al. Endmember variability in spectral mixture analysis:A review[J]. Remote Sensing of Environment, 2011,115(7):1603-1616.
[12] Bioucas-Dias J M, Plaza A, Dobigeon N, et al. Hyperspectral unmixing overview:Geometrical,statistical,and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012,5(2):354-379.
[13] Boardman J W, Kruse F A, Green R O. Mapping target signatures via partial unmixing of aviris data[C]// JPL Airborne Geoscience Workshop, 1995:23-26.
[14] Ridd M K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing:Comparative anatomy for cities?[J] International Journal of Remote Sensing, 1995,16(12):2165-2185.
doi: 10.1080/01431169508954549
[15] Keshava N, Mustard J F. Spectral unmixing[J]. IEEE Signal Processing Magazine, 2002,19(1):44-57.
[16] Adams J B, Smith M O, Johnson P E. Spectral mixture modeling:A new analysis of rock and soil types at the Viking Lander-1 site[J]. Journal of Geophysical Research, 1986,91(b8):8098-8112.
doi: 10.1029/JB091iB08p08098
[17] Zare A, Ho K C. Endmember variability in hyperspectral analysis:Addressing spectral variability during spectral unmixing[J]. IEEE Signal Processing Magazine, 2014,31(1):95-104.
doi: 10.1109/MSP.2013.2279177
[18] Dennison P E, Roberts D A. Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE[J]. Remote Sensing of Environment, 2003,87(2-3):123-135.
[19] Zhang J, Rivard B, Sánchez-Azofeifa A, et al. Intra- and inter-class spectral variability of tropical tree species at La Selva,Costa Rica:Implications for species identification using HYDICE imagery[J]. Remote Sensing of Environment, 2006,105(2):129-141.
[20] Zhang C S, Ma L, Chen J, et al. Assessing the impact of endmember variability on linear spectral mixture analysis (LSMA):A theoretical and simulation analysis[J]. Remote Sensing of Environment, 2019,235:111471.
[21] Frankenberg C, Fisher J B, Worden J, et al. New global observations of the terrestrial carbon cycle from GOSAT:Patterns of plant fluorescence with gross primary productivity[J]. Geophysical Research Letters, 2011,38:L17706.
[22] Guanter L, Zhang Y, Jung M, et al. Global and time-resolved monitoring of crop photosynjournal with chlorophyll fluorescence[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111:E1327-E1333.
pmid: 24706867
[23] Guan K, Berry J A, Zhang Y, et al. Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence[J]. Global Change Biology, 2016,22:716-726.
doi: 10.1111/gcb.13136 pmid: 26490834
[24] Peng B, Guan K, Zhou W, et al. Assessing the benefit of satellite-based solar-induced chlorophyll fluorescence in crop yield prediction[J]. International Journal of Applied Earth Observation and Geoinformation, 2020,90:102126.
doi: 10.1016/j.jag.2020.102126
[25] Daumard F, Champagne S, Fournier A, et al. A field platform for continuous measurement of canopy fluorescence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010,48(9):3358-3368.
doi: 10.1109/TGRS.2010.2046420
[26] Song L, Guanter L, Guan K Y, et al. Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains[J]. Global Change Bio-logy, 2018,24(9):4023-4037.
[27] Shan N, Ju W, Migliavacca M, et al. Modeling canopy conductance and transpiration from solar-induced chlorophyll fluorescence[J]. Agricultural and Forest Meteorology, 2019,268:189-201.
[28] Wang S, Ju W, Penuelas J, et al. Urban-rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons[J]. Nature Ecology and Evolution, 2019,3:1076-1085.
pmid: 31235928
[29] Zhang Y, Commane R, Zhou S, et al. Light limitation regulates the response of autumn terrestrial carbon uptake to warming[J]. Nature Climate Change, 2020,10:739-743.
[30] Zhang Y, Parazoo N C, Williams A P, et al. Large and projected strengthening moisture limitation on end-of-season photosynjournal[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020,117(17):9216-9222.
doi: 10.1073/pnas.1914436117 pmid: 32284402
[31] Yang P Q, van der Tol C. Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance[J]. Remote Sensing of Environment, 2018,209:456-467.
[32] Zeng Y, Badgley G, Dechant B, et al. A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence[J]. Remote Sensing of Environment, 2019,232:111209.
[33] Zhang Z, Chen J M, Guanter L, et al. From canopy-leaving to total canopy far-red fluorescence emission for remote sensing of photosynjournal:First results from TROPOMI[J]. Geophysical Research Letters, 2019,46(21):12030-12040.
[34] Zhang Z, Zhang Y, Porcar-Castell A, et al. Reduction of structural impacts and distinction of photosynthetic pathways in a global estimation of GPP from space-borne solar-induced chlorophyll fluorescence[J]. Remote Sensing of Environment, 2020,240:111722.
[35] Liu X, Guanter L, Liu L, et al. Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model[J]. Remote Sensing of Environment, 2019,231:110772.
[36] Liu X, Liu L, Hu J, et al. Improving the potential of red SIF for estimating GPP by downscaling from the canopy level to the photosystem level[J]. Agricultural and Forest Meteorology, 2020,281:107846.
doi: 10.1016/j.agrformet.2019.107846
[37] 李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报(信息科学版), 2014,39(5):505-513,540.
Li D R, Li M. Research advance and application prospect of unmanned aerial vehicle remote sensing system[J]. Geomatics and Information Science of Wuhan University, 2014,39(5):505-513,540.
doi: 10.13203/j.whugis20140045
[38] 廖小罕, 周成虎, 苏奋振, 等. 无人机遥感众创时代[J]. 地球信息科学学报, 2016,18(11):1439-1447.
Liao X H, Zhou C H, Su F Z, et al. The mass innovation era of UAV remote sensing[J]. Journal of Geo-Information Science, 2016,18(11):1439-1447.
[39] 廖小罕, 肖青, 张颢. 无人机遥感:大众化与拓展应用发展趋势[J]. 遥感学报, 2019,23(6):1046-1052.
Liao X H, Xiao Q, Zhang H. UAV remote sensing:Popularization and expand application development trend[J]. Journal of Remote Sensing, 2019,23(6):1046-1052.
[40] 廖小罕. 地理科学发展与新技术应用[J]. 地理科学进展, 2020,39(5):709-715.
Liao X H. Advance of geographic sciences and new technology applications[J]. Progress in Geography, 2020,39(5):709-715.
[1] 张红利, 罗蔚然, 李艳. 基于粒子群优化和像元分解模型的遥感影像时空融合[J]. 国土资源遥感, 2020, 32(4): 33-40.
[2] 朱爽, 张锦水. 时间序列低分影像修正中分遥感冬小麦分布[J]. 国土资源遥感, 2020, 32(1): 19-26.
[3] 林娜, 杨武年, 王斌. 基于核方法的高光谱遥感图像混合像元分解[J]. 国土资源遥感, 2017, 29(1): 14-20.
[4] 金鑫, 柯长青. 基于混合像元分解的天山典型地区冰雪变化监测[J]. 国土资源遥感, 2012, 24(4): 146-151.
[5] 张志新, 邓孺孺, 李灏, 陈蕾, 陈启东, 何颖清.  ̄基于混合像元分解的南方地区植被覆盖度遥感监测——以广州市为例[J]. 国土资源遥感, 2011, 23(3): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发