Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (2): 56-62    DOI: 10.6046/zrzyyg.2021216
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于PROSPECT-VISIR模型构建新植被水分指数
王界1(), 王光辉1,2(), 刘宇1, 齐建伟1, 张涛1
1.自然资源部国土卫星遥感应用中心,北京 100048
2.中国矿业大学环境与测绘学院,徐州 221116
Construction of new vegetation water index based on PROSPECT-VISIR model
WANG Jie1(), WANG Guanghui1,2(), LIU Yu1, QI Jianwei1, ZHANG Tao1
1. Land Satellite Remote Sensing Application Center, MNR, Beijing 100048, China
2. School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
全文: PDF(3541 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

利用PROSPECT-VISIR叶片模型,获得了不同叶片参数条件下可见光—中红外波谱区间的叶片反射率模拟数据,分析了植被叶片光谱特征波段,找到叶片反射率对含水量变化敏感的波段范围。在几种常见的可见光—近红外波段植被水分指数基础上,加入中红外波段反射率,提出了4种新型植被水分指数模型: 中红外归一化差异红外指数(mid-infrared normalized difference infrared index,NDIIM)、中红外归一化水分指数(mid-infrared normalized difference water index,NDWIM)、中红外归一化多波段干旱指数(mid-infrared normalized multi-band drought index,NMDIM)和中红外归一化植被指数(mid-infrared normalized difference vegetation index,NDVIM)。利用叶片反射率模拟数据,比较了4种新型植被水分指数与传统水分指数对叶片含水量的敏感性,建立了新植被水分指数与叶片含水量和干物质含量的定量关系模型,其中NMDIM的关系式决定系数R2达到0.972,表现最好。文章基于NMDIM和NDIIM发展了一种双植被指数的叶片含水量估算模型,实现在干物质含量未知情况下对叶片含水量的准确估算(均方根误差为0.002 1 g/cm2)。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王界
王光辉
刘宇
齐建伟
张涛
关键词 叶片辐射传输模型植被水分指数中红外波段反射率叶片含水量    
Abstract

In this paper, the leaf reflectance simulation data of visible to mid-infrared spectral range under the condition of different leaf parameters were obtained using the PROSPECT-VISIR leaf model. The spectral characteristic bands of vegetation leaves were analyzed to find the range of bands within which leaf reflectance is sensitive to changes in water content. On the basis of several common vegetation water indexes derived from visible and near-infrared bands, four new vegetation water index models were proposed by addition of the reflectance of the mid-infrared band, namely mid-infrared normalized difference infrared index (NDIIM), mid-infrared normalized difference water index (NDWIM), mid-infrared normalized multi-band drought index (NMDIM) and mid-infrared normalized difference vegetation index (NDVIM). Based on the leaf reflectance simulation data, the sensitivity of four new vegetation water indexes and that of common water index to leaf water content were compared, and the quantitative relationship model between, on one hand, new vegetation water index and, on the other hand, leaf water content and dry matter content, was established. The fitting degree of NMDIM was 0.972, showing the best performance. Finally, a leaf water content estimation model was developed based on two new vegetation water indexes NMDIM and NDIIM so that accurate estimation of leaf water content can be achieved even when the dry matter content is unknown (the root mean square error of the model was 0.002 1g/cm2).

Key wordsleaf radiative transfer model    vegetation water index    mid-infrared reflectance    leaf water content
收稿日期: 2021-07-14      出版日期: 2022-06-20
ZTFLH:  TP79  
基金资助:国家重点研发计划、高分辨率对地观测系统重大专项“高分遥感测绘应用系统(二期)”(编号: 42-Y30B04-9001-19/21(42-Y30B04-9001-19/21)
通讯作者: 王光辉
作者简介: 王界(1990-),男,硕士,主要从事地表参量定量反演、热红外遥感及应用研究。Email: wangjie0039@163.com
引用本文:   
王界, 王光辉, 刘宇, 齐建伟, 张涛. 基于PROSPECT-VISIR模型构建新植被水分指数[J]. 自然资源遥感, 2022, 34(2): 56-62.
WANG Jie, WANG Guanghui, LIU Yu, QI Jianwei, ZHANG Tao. Construction of new vegetation water index based on PROSPECT-VISIR model. Remote Sensing for Natural Resources, 2022, 34(2): 56-62.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021216      或      https://www.gtzyyg.com/CN/Y2022/V34/I2/56
Fig.1  叶片反射率与3种叶片参数的关系图
Fig.2  叶片反射率与含水量和干物质含量的关系图
传统植
被指数
公式 新型植
被指数
公式
NDII NDII = $\frac{\rho_{820}\ \ -\ \rho_{1600}}{\rho_{820}\ \ +\ \rho_{1600}}$ NDIIM NDIIM= $\frac{\rho_{1600}\ \ -\ \rho_{4200}}{\rho_{1600}\ \ +\ \rho_{4200}}$
NDWI NDWI= $\frac{\rho_{860}\ \ -\ \rho_{1240}}{\rho_{860}\ \ +\ \rho_{1240}}$ NDWIM NDWIM= $\frac{\rho_{1240}\ \ -\ \rho_{4200}}{\rho_{1240}\ \ +\ \rho_{4200}}$
NMDI NMDI= $\frac{\rho_{860}\ \ -\ (\rho_{1640}\ \ -\ \rho_{2130}\ \ )}{\rho_{860}\ \ +\ (\rho_{1640}\ \ +\ \rho_{2130}\ \ )}$ NMDIM NMDIM= $\frac{\rho_{860}\ \ -\ (\rho_{4200}\ \ -\ \rho_{2130}\ \ )}{\rho_{860}\ \ +\ (\rho_{4200}\ \ +\ \rho_{2130}\ \ )}$
NDVI NDVI= $\frac{\rho_{895}\ \ -\ \rho_{675}}{\rho_{895}\ \ +\ \rho_{675}}$ NDVIM NDVIM= $\frac{\rho_{895}\ \ -\ \rho_{4200}}{\rho_{895}\ \ +\ \rho_{4200}}$
Tab.1  4种新型植被水分指数
Fig.3  新型植被水分指数和传统指数与叶片含水量之间的关系图
关系式 R2 RMSE
NDIIM = 0.792 7 + 0.017 1×lnCw 0.912 2.885e-4
NDWIM = 0.887 2 +0.011 8×lnCw 0.963 1.263e-4
NMDIM = 0.896 8 +0.031 2×lnCw 0.997 9.268e-5
NDVIM= 0.876 2 +0.028 7×lnCw 0.994 1.179e-4
Tab.2  新型植被水分指数与叶片含水量的关系式
Fig.4  新型植被水分指数和传统指数与叶片干物质含量之间的关系图
关系式 R2 RMSE
NDIIM= 0.762 2 - 2.840Cm 0.982 1.386e-4
NDWIM = 0.791 3 -0.998Cm 0.905 1.182e-4
NMDIM = 0.861 3 -1.981Cm 0.991 6.697e-5
NDVIM = 0.800 1 -0.931Cm 0.901 1.188e-4
Tab.3  新型植被水分指数与叶片干物质含量的关系式
新型植
被指数
a0 a1 a2 R2 RMSE
NDIIM 0.703 -0.015 0 -2.987 0.932 0.001 7
NDWIM 0.789 -0.000 7 -1.115 0.811 0.003 9
NMDIM 0.840 -0.005 0 -2.002 0.972 0.001 3
NDVIM 0.812 -0.002 6 -1.043 0.837 0.002 7
Tab.4  4种植被水分指数的系数
Fig.5  叶片含水量反演值与实际值的对比图
Fig.6  叶片含水量反演值与实际值的对比图
[1] Datt B. Remote sensing of water content in Eucalyptus leaves[J]. Australian Journal of Botany, 1999, 47(6):909-923.
doi: 10.1071/BT98042
[2] Penuelas J, Gamon J A, Griffin K L, et al. Assessing community type,plant biomass,pigment composition,and photosynthetic efficiency of aquatic vegetation from spectral reflectance[J]. Remote Sensing of Environment, 1993, 46(2):110-118.
doi: 10.1016/0034-4257(93)90088-F
[3] Bauer M E, Daughtry C S T, Biehl L L, et al. Field spectroscopy of agricultural crops[J]. IEEE Transactions on Geoscience and Remote Sensing, 1986(1):65-75.
[4] Chuvieco E, Riaño D, Aguado I, et al. Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data:Applications in fire danger assessment[J]. International Journal of Remote Sensing, 2002, 23(11):2145-2162.
doi: 10.1080/01431160110069818
[5] Hunt E R, Rock B N, Nobel P S. Measurement of leaf relative water content by infrared reflectance[J]. Remote Sensing of Environment, 1987, 22(3):429-435.
doi: 10.1016/0034-4257(87)90094-0
[6] Bannari A, Morin D, Bonn F, et al. A review of vegetation indices[J]. Remote Sensing Reviews, 1995, 13(1-2):95-120.
doi: 10.1080/02757259509532298
[7] Peñuelas J, Pinol J, Ogaya R, et al. Estimation of plant water concentration by the reflectance water index WI (R900/R970)[J]. International Journal of Remote Sensing, 1997, 18(13):2869-2875.
doi: 10.1080/014311697217396
[8] Ceccato P, Gobron N, Flasse S, et al. Designing a spectral index to estimate vegetation water content from remote sensing data:Part 1:Theoretical approach[J]. Remote Sensing of Environment, 2002, 82(2):188-197.
doi: 10.1016/S0034-4257(02)00037-8
[9] Hardisky M, Klemas V, Smart M. The influence of soil salinity,growth form,and leaf moisture on the spectral radiance[J]. Spartina Alterniflora, 1983, 49:77-83.
[10] Gao B C. NDWI:A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3):257-266.
doi: 10.1016/S0034-4257(96)00067-3
[11] Wang L L,and John J Q. NMDI:A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing[J]. Geophysical Research Letters, 2007, 34:20.
[12] Rouse J W, et al. Monitoring vegetation systems in the Great Plains with ERTS[J]. NASA Special Publication, 1974, 351:309.
[13] Boyd D S. The relationship between the biomass of Cameroonian tropical forests and radiation reflected in middle infrared wavelengths (3.0-5.0 mu m)[J]. International Journal of Remote Sensing, 1999, 20(5):1017-1023.
doi: 10.1080/014311699213055
[14] Kaufman Y J, Remer L A. Detection of forests using mid-IR reflectance:An application for aerosol studies[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(3):672-683.
doi: 10.1109/36.297984
[15] Carter G A. Primary and secondary effects of water content on the spectral reflectance of leaves[J]. American Journal of Botany, 1991, 78(7): 916-924.
doi: 10.1002/j.1537-2197.1991.tb14495.x
[16] Libonati R, DaCamara C C, Pereira J M C, et al. A new optimal index for burnt area discrimination in satellite imagery[C]// 2007 EUMETSAT Meteorological Satellite Conference and the 15th American Meteorological Society (AMS) Satellite Meteorological & Oceanography Conference.Germany:Darmstadt, 2007:24-28.
[17] Vescovo L, Gianelle D. Using the MIR bands in vegetation indices for the estimation of grassland biophysical parameters from satellite remote sensing in the Alps region of Trentino (Italy)[J]. Advances in Space Research, 2008, 41(11):1764-1772.
doi: 10.1016/j.asr.2007.07.043
[18] Tang B H, Jia Y Y, Zhang X, et al. Vegetation monitoring with surface bi-directional reflectivities in MODIS near-IR and mid-IR channels[C]// International Geoscience and Remote Sensing Symposium.IEEE, 2007:3333-3336.
[19] Ullah S, Skidmore A K, Naeem M, et al. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis[J]. Science of the Total Environment, 2012, 437:145-152.
doi: 10.1016/j.scitotenv.2012.08.025
[20] Ullah S, Skidmore A K, Ramoelo A, et al. Retrieval of leaf water content spanning the visible to thermal infrared spectra[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93:56-64.
doi: 10.1016/j.isprsjprs.2014.04.005
[21] Arshad M, Ullah S, Khurshid K, et al. Estimation of leaf water content from mid-and thermal-infrared spectra by coupling genetic algorithm and partial least squares regression[J]. Journal of Applied Remote Sensing, 2018, 12(2):022203.
[22] Jacquemoud S, Baret F. PROSPECT:A model of leaf optical properties spectra[J]. Remote Sensing of Environment, 1990, 34(2):75-91.
doi: 10.1016/0034-4257(90)90100-Z
[23] Gerber F, Marion R, Olioso A., et al. Modeling directional-hemispherical reflectance and transmittance of fresh and dry leaves from 0.4 μm to 5.7 μm with the PROSPECT-VISIR model[J]. Remote Sensing of Environment, 2011, 115(2):404-414.
doi: 10.1016/j.rse.2010.09.011
[1] 王溥, 武建军, 聂建亮, 孔凡明, 丁慧彦, 赵刘慧. 不同植被水分指数对小麦水分状况监测效果对比[J]. 国土资源遥感, 2010, 22(3): 97-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发