Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (3): 33-42    DOI: 10.6046/zrzyyg.2021259
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于朴素贝叶斯方法的FY-4A/AGRI云检测模型
鄢俊洁(), 郭雪星(), 瞿建华, 韩旻
北京华云星地通科技有限公司,北京 100081
An FY-4A/AGRI cloud detection model based on the naive Bayes algorithm
YAN Junjie(), GUO Xuexing(), QU Jianhua, HAN Min
Beijing Huayun Shinetek Science and Technology Co., Ltd., Beijing 100081, China
全文: PDF(6670 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对风云四号A星(FY-4A)中多通道扫描成像辐射计(advanced geosynchronous radiation imager,AGRI)云检测问题,提出了一种基于朴素贝叶斯算法的全自动云检测方法。使用朴素贝叶斯算法作为核心结构,基于光学载荷基本云检测原理选择合适的红外通道作为特性分类器参数,可保证日夜云检测一致性,同时针对不同的地表类型和不同月份分别分类训练构建,最终得到基于朴素贝叶斯算法的云检测模型。针对FY-4A/AGRI数据生成了7种经典的云检测特征和1种基于红外合成图像特征的贝叶斯分类器,经过2019年国家卫星气象中心业务云检测产品的学习测试验证,在陆地、沙漠、浅水和深海的召回率(probability of detection,POD)达到98%以上,积雪POD达到80%,南北极POD达到80%以上。将检测结果与国家卫星气象中心业务系统云检测结果进行比较,全年月度平均POD均高于98%,误判率(false alarm ratio,FAR)低于5%,Kuipers评分(Kuiper’s skill score,KSS)均高于90%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鄢俊洁
郭雪星
瞿建华
韩旻
关键词 FY-4A/AGRI朴素贝叶斯云检测POD    
Abstract

This study developed an automatic cloud detection method based on the naive Bayes algorithm for the cloud detection of the advanced geosynchronous radiation imager (AGRI) aboard the FY-4A satellite. In this method, the naive Bayes algorithm serves as the core structure, and appropriate infrared channels are selected as the parameters of the characteristic classifier according to the basic cloud detection principle of optical payload to ensure the consistency of cloud detection between day and night. After the classified training and construction for different surface types and different months, a cloud detection model based on the naive Bayes algorithm was finally established. Moreover, the classifier for FY-4A/AGRI data used in the method was established considering seven typical cloud detection characteristics and one characteristic based on the infrared composite images. As indicated by the learning tests and verification using the business cloud detection product of the National Satellite Meteorological Center (NSMC) in 2019, the classifier yielded a probability of detection (POD) greater than 98% for land, desert, shallow water, and deep sea, greater than 80% for snow cover, and greater than 80% for North and South poles. The comparison between the cloud detection results of this study and those obtained using the NSMC business system showed that the cloud detection results of this study had an average monthly POD of the whole year greater than 98%, a false alarm ratio (FAR) less than 5%, and all Kuiper’s skill scores (KSSs) greater than 90%.

Key wordsFY-4A/AGRI    Naive Bayes Algorithm    cloud detection    POD
收稿日期: 2021-08-19      出版日期: 2022-09-21
ZTFLH:  TP79  
基金资助:国家自然科学基金面上项目“基于深对流云和月球高低端目标的长序列气象卫星辐射定标研究”(41675036)
通讯作者: 郭雪星
作者简介: 鄢俊洁(1980-),女,硕士,高级工程师,研究方向为气象卫星数据处理与应用。Email: yanjj@cma.gov.cn
引用本文:   
鄢俊洁, 郭雪星, 瞿建华, 韩旻. 基于朴素贝叶斯方法的FY-4A/AGRI云检测模型[J]. 自然资源遥感, 2022, 34(3): 33-42.
YAN Junjie, GUO Xuexing, QU Jianhua, HAN Min. An FY-4A/AGRI cloud detection model based on the naive Bayes algorithm. Remote Sensing for Natural Resources, 2022, 34(3): 33-42.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021259      或      https://www.gtzyyg.com/CN/Y2022/V34/I3/33
Fig.1  朴素贝叶斯云检测方法流程
通道序号 中心波长/μm 特性描述
1 0.47 白天云、沙尘和气溶胶
2 0.65 白天云、沙尘、积雪等
3 0.825 白天云、气溶胶、植被、海洋特性检测
4 1.375 卷云
5 1.61 低云/雪 、水云/冰云
6 2.25 卷云、气溶胶
7 3.75H 火点高温
8 3.75L 低云/雾
9 6.25 高层云
10 7.1 中层云
11 8.5 云、沙尘
12 10.7 地球表面和云
13 12.0
14 13.5 中低层云
Tab.1  FY-4A AGRI载荷通道 [23]
Fig.2  全球地表覆盖分类
Fig.3  2019年全球各月积雪覆盖
Fig.4  伪4 μm发射率随太阳天顶角的变化
Fig.5  2020年1月1日10时 UTC FY-4A/AGRI GeoColor彩色合成图
Fig.6  数据划分统计
Fig.7  特征分布与云属概率曲线修正图
月份 晴空 KSS
POD FAR POD FAR
1 98.2 5.6 89.4 3.5 87.6
2 98.1 7.4 88.5 3.1 86.6
3 97.8 6.9 87.2 4.2 85.0
4 90.5 6.3 88.7 2.8 87.3
5 98.5 6.4 90.3 2.3 88.9
6 98.9 4.8 89.2 2.7 88.1
7 98.7 5.0 90.3 2.6 89.0
8 98.8 5.2 89.0 2.6 87.8
9 90.4 7.0 88.0 2.8 86.4
10 98.4 7.8 87.6 2.6 86.0
11 98.0 6.7 90.1 3.0 88.1
12 98.2 6.8 89.4 2.9 87.6
均值 97.0 6.3 89.0 2.9 87.4
Tab.2  2019年12个月朴素贝叶斯以业务CLM为真值的交叉比对结果
Fig.8  2020年1月1日10时UTC云检测结果对比
Fig.9  1月和6月各下垫面T11特征概率曲线
Fig.10  2019年9月26日5时 UTC云检测局地结果对比
Fig.11  不同月度模型检测差异
模型
月份
类别 可能云 可能晴空 晴空 总计
1月 50.73 3.75 3.51 1.64 59.63
可能云 1.95 0.51 0.55 0.91 3.92
可能晴空 1.55 0.56 0.47 1.58 4.16
晴空 3.14 1.96 2.65 24.54 32.29
6月 46.89 3.83 3.3 8.55 62.57
可能云 1.73 0.35 0.35 1.23 3.66
可能晴空 1.59 0.35 0.34 1.35 3.63
晴空 7.16 2.25 3.19 17.54 30.14
总计 57.37 6.78 7.18 28.67 100
Tab.3  不同月度模型云检测混淆矩阵统计
[1] 林晔. 大气探测学教程[M]. 北京: 气象出版社, 1995.
Lin Y. Course of atmospheric exploration[M]. Beijing: China Meteorological Press, 1995.
[2] 杨亦萍, 董晓刚, 戴聪明, 等. 利用MODIS数据对北极夏季卷云特性的研究[J]. 红外与激光工程, 2016, 45(4):30-37.
Yang Y P, Dong X G, Dai C M, et al. Cirrus clouds properties in the arctic in summer based on MODIS data[J]. Infrared and Laser Engineering, 2016, 45(4):30-37.
[3] 秦永, 付仲良, 周凡, 等. 一种利用TM影像自动检测云层的方法[J]. 武汉大学学报(信息科学版), 2014, 39(2):234-238.
Qin Y, Fu Z L, Zhou F, et al. A method of automatic cloud detection using TM image[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2):234-238.
[4] 赵忠明, 朱重光. 遥感图象中薄云的去除方法[J]. 环境遥感, 1996, 11(3):195-199.
Zhao Z M, Zhu C G. Approach to removing cloud cover from satellite imagery[J]. Remote Sensing of Environment, 1996, 11(3):195-199.
[5] Rossow W B, Schiffer R A. ISCCP cloud data products[J]. Bulletin of the American Meteorological Society, 1991, 72(1):2-20.
doi: 10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2
[6] Seze G, Rossow W B. Time-cumulated visible and infrared radiance histograms used as descriptors of surface and cloud variations[J]. International Journal of Remote Sensing, 1991, 12(5):877-920.
doi: 10.1080/01431169108929702
[7] Rossow W B, Garder L C. Cloud detection using satellite measurements of infrared and visible radiances for ISCCP[J]. Journal of Climate, 1993, 6(12):2341-2369.
doi: 10.1175/1520-0442(1993)006<2341:CDUSMO>2.0.CO;2
[8] 刘健. FY-2云检测中动态阈值提取技术改进方法研究[J]. 红外与毫米波学报, 2010, 29(4):288-292.
Liu J. Improvement of dynamic threshold value extraction technic in FY-2 cloud detection[J]. Journal of Infrared and Millimeter Waves, 2010, 29(4):288-292.
[9] Saunders R W, Kriebel K T. An improved method for detecting clear sky and cloudy radiances from AVHRR data[J]. International Journal of Remote Sensing, 1988, 9(1):123-150.
doi: 10.1080/01431168808954841
[10] Kriebel K T, Saunders R W, Gesell G. Optical properties of clouds derived from fully cloudy AVHRR pixels[J]. Beiträge zur Physik der freien Atmosphäre, 1989, 62:165-171.
[11] Gesell G. An algorithm for snow and ice detection using AVHRR data an extension to the APOLLO software package[J]. International Journal of Remote Sensing, 1989, 10:4-5,897-905.
[12] Stowe L L, McClain E P, Carey R, et al. Global distribution of cloud cover derived from NOAA/AVHRR operational satellite data[J]. Advances in Space Research, 1991, 11(3):51-54.
[13] Stowe L L, Vemury S K, Rao A V. AVHRR clear sky radiation data sets at NOAA/NESDIS[J]. Advance in Space Research, 1994, 14(1):113-116.
[14] Menzel W P, Wylie D P, Strabala K I. Seasonal and diurnal changes in cirrus clouds as seen in four years of observations with the VAS[J]. Journal of Applied Meteorology, 1992, 31(4):370-385.
doi: 10.1175/1520-0450(1992)031<0370:SADCIC>2.0.CO;2
[15] Wylie D P, Menzel W P, Woolf H M, et al. Four years of global cirrus cloud statistics using HIRS[J]. Journal of Climate, 1994, 7(12):1972-1986.
doi: 10.1175/1520-0442(1994)007<1972:FYOGCC>2.0.CO;2
[16] Shan N, Zheng T Y, Wang Z S. High-speed and high-accuracy algorithm for cloud detection and its application[J]. Journal of Remote Sensing, 2009, 13(6):1138-1146.
[17] Goodman A H, Henderson-Sellers A. Cloud detection and analysis:A review of recent progress[J]. Atmospheric Research, 1988, 21(3-4):203-228.
doi: 10.1016/0169-8095(88)90027-0
[18] 韩成鸣, 李耀东, 史小康. 云分析预报方法研究进展[J]. 地球科学进展, 2015, 30(4):505-516.
doi: 10.1167/j.issn.1001-8166.2015.04.0505
Han C M, Li Y D, Shi X K. Overview of researches on cloud analysis and prediction methods[J]. Advances in Earth Science, 2015, 30(4):505-516.
[19] 孙汝星, 范荣双. 基于支持向量机的多特征融合影像云检测[J]. 测绘与空间地理信息, 2018, 41(6):153-156,160.
Sun R X, Fan R S. Multi-feature fusion image cloud detection based on SVM[J]. Geomatics and Spatial Information Technology, 2018, 41(6):153-156,160.
[20] 关峥嵘, 谭毅华, 田金文. 一种快速的遥感卫星图像云检测算法. 计算机与数字工程, 2019, 47(11):2808-2811.
Guan Z R, Tan Y H, Tian J W. A fast cloud detection method in remote sensing satellite images[J]. Computer and Digital Engineering, 2019, 47(11):2808-2811.
[21] 瞿建华, 鄢俊洁, 薛娟, 等. 基于深度学习的FY3D/MERSI和EOS/MODIS云检测模型研究[J]. 气象与环境学报, 2019, 35(3):87-93.
Qu J H, Yan J J, Xue J, et al. Research on the cloud detection model of FY3D /MERSI and EOS /MODIS based on deep learning[J]. Journal of Meteorology and Environment, 2019, 35(3):87-93.
[22] 董瑶海. 风云四号气象卫星及其应用展望[J]. 上海航天, 2016, 33(2):1-8.
Dong Y H. Fy-4 meteorological satellite and its application prospect[J]. Aerospace Shanghai, 2016, 33(2):1-8.
[23] 陆风, 张晓虎, 陈博洋, 等. 风云四号气象卫星成像特性及其应用前景[J]. 海洋气象学报, 2017, 37(2):1-12.
Lu F, Zhang X H, Chen B Y, et al. FY-4 geostationary meteorological satellite imaging characteristics and its application prospects[J]. Journal of Marine Meteorology, 2017, 37(2):1-12.
[24] 杨军. 气象卫星及其应用[M]. 北京: 气象出版社. 2012.
Yang J. Meteorological satellites and their applications[M]. Beijing: China Meteorological Press, 2012.
[25] Ackerman S A, Smith W L, Revercomb H E, et al. The 27-28 October 1986 FIRE IFO cirrus case study:Spectral properties of cirrus clouds in the 8-12μm[J]. Monthly Weather Review, 1990, 118(11),2377-2388.
doi: 10.1175/1520-0493(1990)118<2377:TOFICC>2.0.CO;2
[26] Miller S D, Lindsey D T, Seaman C J, et al. GeoColor:A blending technique for satellite imagery[J]. Journal of Atmospheric and Oceanic Technology, 2020, 37(3):429-448.
doi: 10.1175/JTECH-D-19-0134.1
[1] 伍炜超, 叶发旺. 面向多背景环境的Sentinel-2云检测[J]. 自然资源遥感, 2023, 35(3): 124-133.
[2] 刘广进, 王光辉, 毕卫华, 刘慧杰, 杨化超. 基于DenseNet与注意力机制的遥感影像云检测算法[J]. 自然资源遥感, 2022, 34(2): 88-96.
[3] 栗旭升, 刘玉锋, 陈冬花, 刘赛赛, 李虎. 结合图像特征的支持向量机高分一号云检测[J]. 国土资源遥感, 2020, 32(3): 55-62.
[4] 刘紫涵, 吴艳兰. 遥感图像云检测方法研究进展[J]. 国土资源遥感, 2017, 29(4): 6-7.
[5] 夏浪, 毛克彪, 孙知文, 马莹, 赵芬. 基于DNB验证的VIIRS夜间云检测方法[J]. 国土资源遥感, 2014, 26(3): 74-79.
[6] 秦雁, 邓孺孺, 何颖清, 陈蕾, 陈启东, 熊首萍. 基于光谱及几何信息的TM图像厚云去除算法[J]. 国土资源遥感, 2012, 24(4): 55-61.
[7] 韩杰, 杨磊库, 李慧芳, 梁洪有, 马晓红, 谢玉娟. 基于动态阈值的HJ-1B图像云检测算法研究[J]. 国土资源遥感, 2012, 24(2): 12-18.
[8] 侯岳, 刘培洵, 陈顺云, 刘少峰. 基于MODIS影像的夜间云检测算法研究[J]. 国土资源遥感, 2008, 20(1): 34-37.
[9] 何全军, 曹静, 黄江, 吴志军.  基于多光谱综合的MODIS数据云检测研究[J]. 国土资源遥感, 2006, 18(3): 19-22.
[10] 蒋耿明, 牛铮, 阮伟利, 王长耀. MODIS影像合成算法研究和实现[J]. 国土资源遥感, 2004, 16(2): 11-15,79.
[11] 杨俊泉, 沈建中, 莫伟华, 张远飞, 陈尚文, 林少雄. NOAA卫星图像云点检测的三维统计图集合判别[J]. 国土资源遥感, 1997, 9(4): 54-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发