|
|
A study of geological-geophysical characteristics of uranium deposits in Jiling pluton |
Zhen-Tao SONG1,2, Cheng QI1,2( ), Dong-Yu HAN1,2, Bo LIU1,2, Wei ZHANG1,2, Xin-Xin HE1,2, Dong-Hua SUN1,2, Bin WEI1,2, Yong-Shun LIANG1 |
1. Airborne Survey and Remote Sensing Center of Nuclear Industry, Shijiazhuang 050002, China 2. CNNC Key Laboratory for Geophysical Exploration Technology Center of Uranium Resource, Shijiazhuang 050002, China |
|
|
Abstract Through the study of ore deposit geology of uranium deposits in Jiling pluton of Longshoushan metallogenic belt, the authors hold that, although the ore-bearing sandstones are different, different types of uranium mineralization have some similarity in that the ore deposits all underwent such evolution processes as magmatic differentiation, enrichment at the edge of rock mass, and hydrothermal activity and all exhibit the uranium element differentiation, migration and enrichment mechanism. Deposits of the geophysical field can be compared with each other. Through in depth study and a comparison of physical characteristics of three typical types of uranium deposits (siliceous veins, cryptoexplosive breccia type, alkaline complex type), the authors found that uranium deposits are generally located in the transition region between strong and weak magnetic anomalies with some favor to the weak magnetic anomaly side; in the resistivity profile, uranium deposits are mostly located in high and low resistance variation gradient belt or in the middle and lower resistance zone; in the resistivity plan, uranium deposits are located in the middle and lower resistance transition zone with some favor to the low resistivity side. The area of the electric and magnetic intensity anomaly transition zone with some favor to the weak anomaly side can be used as a new geophysical prospecting mark.
|
Received: 23 February 2017
Published: 24 October 2018
|
|
|
|
|
|
|
岩性 | 磁化率κ/(10-5SI) | 电阻率/(Ω·m) | 常见值 | 磁性特征 | 组数 | 常见值 | 电阻率特征 | 组数 | 大理岩 | 10 | 弱磁性 | 34 | 1520 | 高阻 | 30 | 板岩 | 13 | 弱磁性 | 23 | 257 | 低阻 | 22 | 角闪片岩 | 255 | 中等磁性 | 26 | 213 | 低阻 | 20 | 千枚岩 | 124 | 中弱磁性 | 31 | 322 | 低阻 | 20 | 硅质大理岩 | 7 | 弱磁性 | 43 | 1868 | 高阻 | 36 | 硅质角砾岩 | 12 | 弱磁性 | 32 | 2027 | 高阻 | 35 | 混合岩 | 330 | 中等磁性 | 22 | 582 | 中高阻 | 22 | 中粗粒碱性正长岩 | 24 | 弱磁性 | 36 | 472 | 中阻 | 33 | 肉红色中粗粒斑状花岗岩 | 1038 | 较强磁性 | 38 | 833 | 中高阻 | 35 | 肉红色中细粒花岗岩 | 32 | 弱磁性 | 34 | 682 | 中高阻 | 34 | 中细粒闪长岩、花岗闪长岩 | 1330 | 强磁性 | 27 | 1140 | 高阻 | 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[1] |
陈云杰, 赵如意, 武彬 . 甘肃龙首山地区芨岭铀矿床隐爆角砾岩发现及成因探讨[J]. 地质与勘探, 2012,48(6):1101-1108.
|
[2] |
陈云杰, 傅成铭, 王刚 , 等. 花岗岩型热液铀矿床C、O同位素研究——以甘肃省龙首山芨岭矿区为例[J]. 地质与勘探, 2014,50(4):641-648.
|
[3] |
彭永石, 胡俊祯, 金才坤 , 等. 甘肃省龙首山成矿带成矿规律及远景分析[D].咸阳:核工业二〇三研究所, 1986: 32-37.
|
[4] |
刘兴忠, 冯明月, 罗长本 , 等. 中国铀矿指南[M].北京:中国核工业地总公司地质总局, 1997.
|
[5] |
张宽谋 . 对龙首山地区不同花岗岩体含铀性的探讨[J]. 华东地质学院学报, 1989,12(2):63-66.
|
[6] |
施文静, 胡俊祯 . 龙首山铀成矿带成矿规律与成矿模式[J]. 铀矿地质, 1993,9(3):1-8.
|
[7] |
白云来, 范育新, 汤中立 , 等. 关于中国西部龙首山、祁连山成矿区(带)进一步找矿问题的思考[J]. 地球科学进展, 2005,20(1):36-41.
|
[8] |
赵建国, 王龙成 . 红石泉铀矿床矿化特征及成因类型探讨[J]. 黄金科学技术, 2009,17(1):38-41.
|
[9] |
贺建国 . 甘肃省龙首山成矿带火石岭地区物探测量[D].咸阳:核工业二〇三研究所, 2010.
|
[10] |
贺建国, 赵希刚, 陈秋 , 等. 龙首山成矿带芨岭北东向深大隐伏断裂构造存在的佐证[J]. 铀矿地质, 2013,29(6):357-361.
|
[11] |
夏明哲, 夏昭德, 卢荣辉 , 等. 龙首山地块的归属问题: 来自地壳结构和中—新元古代地层的证据[J]. 地球科学与环境学报, 2011,33(2):132-136.
|
[12] |
辛存林, 马维云, 安国堡 , 等. 甘肃龙首山207铀矿床成矿地质特征及其成矿机制探讨[J]. 地质学报, 2003,87(4):577-590.
|
[13] |
张树明, 魏正宇, 张良 , 等. 龙首山碱交代型铀矿床特征和存在的问题[J]. 矿物学报, 2013,( s):284-285.
|
[14] |
赵如意, 陈云杰, 武彬 , 等. 甘肃龙首山芨岭地区钠交代型铀矿成矿模式研究[J]. 地质与勘探, 2013,49(1):67-74.
|
[15] |
赵如意, 姜常义, 陈旭 , 等. 甘肃龙首山成矿带中段钠长岩脉地质特征及其与铀矿化关系研究[J]. 地质与勘探, 2015,51(6):1069-1078.
|
[16] |
李茂, 宋振涛 . 甘肃省龙首山成矿带中东段物探测量[R]. 石家庄:核工业航测遥感中心, 2015.
|
[17] |
宋振涛, 李茂 . 甘肃省龙首山成矿带革命沟-绿草沟地区音频大地电磁测量[R] . 石家庄:核工业航测遥感中心, 2015.
|
[1] |
FANG Hui, PEI Fa-Gen, HE Mei-Xing, BAI Da-Wei, HU Xiang-Yun, ZHONG Qing, DU Bing-Rui, ZHANG Xiao-Bo, LU Jing-Qi. Effectiveness of audio magnetotelluric sounding for detecting gas hydrate in permafrost regions[J]. Geophysical and Geochemical Exploration, 2017, 41(6): 1068-1074. |
[2] |
LIU Bo, SONG Zhen-Tao, LI Xiao, LI Mao. Geoelectrical characteristics of Geminggou fracture in northern Jiling rock mass[J]. Geophysical and Geochemical Exploration, 2016, 40(5): 876-879. |
|
|
|
|