|
|
Forward modeling on the seasonal frozen soil region detection by ground penetrating radar |
Er-Qiao SONG1,2, Si-Xin LIU1,2( ), Rong-Qin HE1,2, Jia-Qi CAI3, Kun LUO1,2 |
1. College of Geo-exploration Science & Technology, Jilin University, Changchun 130026, China; 2. Key Lab of Applied Geophysics, Ministry of Land and Resources, Changchun 130026, China 3. Taizhou Design Institute of Water Conservancy & Hydro-electric Power, Taizhou 318000, China; |
|
|
Abstract With the change of season, the physical parameters in the process of freezing and thawing in active layer of seasonal frozen soil region change significantly. Taking the seasonal frozen soil in Northeast China as an example, the authors used the Gaussian distribution rough surfaces to simulate the rough freezing and melting layers, established the random media model which can accurately described heterogeneity of the active layers, and carried out forward modeling. The results show that the depth of freezing and melting layers changes with the seasons, together with the change of permittivity and conductivity. The scattered waves in radar profile are very developed because of the heterogeneous active layer and the undulating freezing and melting layers. With the change of time, the greater the fluctuation of the melting layer, the stronger the scattered wave energy in the radar profile, the harder the reflection of the melting and the freezing layers. At the same time, it is proved that the application of GPR to monitor the seasonal variation, frozen depth and melting depth of seasonal frozen soil is a practical method.
|
Received: 25 September 2017
Published: 24 October 2018
|
|
|
|
|
|
|
|
|
介质类型 | 空气 | 冰 | 干砂 | 饱和砂 | 黏土 | 水 | εr | 1 | 3~4 | 3~5 | 23~30 | 5~40 | 80 | σ/(mS/m) | 0 | 0.01 | 0.01 | 0.1~1 | 2~1000 | 0.5 |
|
|
模型 编号 | 平均冻 深/m | 平均融 深/m | 层数 | 平均相对 介电常数 | | 1 | 0 | 0 | Ⅰ | 16.0 | 0.018 | 2 | 0.65 | 0 | Ⅰ | 10.0 | 0.01 | | | | Ⅱ | 16.0 | 0.018 | 3 | 0.98 | 0 | Ⅰ | 9.0 | 0.008 | | | | Ⅱ | 16.0 | 0.018 | 4 | 1.60 | 0 | Ⅰ | 8.0 | 0.002 | | | | Ⅱ | 16.0 | 0.018 | 5 | 1.67 | 0 | Ⅰ | 8.0 | 0.002 | | | | Ⅱ | 16.0 | 0.018 | 6 | 1.60 | 0.41 | Ⅰ | 9.0 | 0.008 | | | | Ⅱ | 12.0 | 0.0125 | | | | Ⅲ | 16.0 | 0.018 | 7 | 1.48 | 0.98 | Ⅰ | 16.0 | 0.018 | | | | Ⅱ | 10.0 | 0.01 | | | | Ⅲ | 16.0 | 0.018 | 8 | 0 | 0 | Ⅰ | 16.0 | 0.018 |
|
|
|
|
|
|
[1] |
周幼吾 . 中国冻土[M]. 北京: 科学出版社, 2000.
|
[2] |
杨建平, 杨岁桥, 李曼 , 等. 中国冻土对气候变化的脆弱性[J]. 冰川冻土, 2013,35(6):1436-1445.
|
[3] |
Wang C, Jin S, Shi H . Area change of the frozen ground in China in the next 50 years[J]. Journal of Glaciology and Geocryology, 2014,36(1):1692-1696.
|
[4] |
俞祁浩, 白旸, 金会军 , 等. 应用探地雷达研究中国小兴安岭地区黑河—北安公路沿线岛状多年冻土的分布及其变化[J]. 冰川冻土, 2008,30(3):461-468.
|
[5] |
李珊珊, 李志伟, 胡俊 , 等. SBAS-InSAR技术监测青藏高原季节性冻土形变[J]. 地球物理学报, 2013,56(5):1476-1486.
|
[6] |
Jørgensen A S, Andreasen F . Mapping of permafrost surface using ground-penetrating radar at Kangerlussuaq airport,Western Greenland[J]. Cold Regions Science & Technology, 2007,48(1):64-72.
|
[7] |
Wang Y, Jin H, Li G . Investigation of the freeze-thaw states of foundation soils in permafrost areas along the China—Russia crude oil pipeline (CRCOP) route using ground-penetrating radar (GPR)[J]. Cold Regions Science & Technology, 2016,126:10-21.
|
[8] |
Merz K, Maurer H, Rabenstein L , et al.Multidisciplinary geophysical investigations over an alpine rock glacier[J].Geophysics, 2016, 81(1):EN1-EN11.
|
[9] |
王通, 俞祁浩, 游艳辉 , 等. 物探技术在多年冻土探测方面的应用[J]. 物探与化探, 2011,35(5):639-642.
|
[10] |
程立, 祁增云 . 瞬态瑞雷波法在冻土场地条件下的应用[J].勘察科学技术, 2010(5):59-61.
|
[11] |
秦艳芳, 陈曦, 周可法 , 等. 利用探地雷达观测分析早春融雪前后沙丘表层土壤含水量的时空分布[J]. 冰川冻土, 2012,34(3):690-697.
|
[12] |
焦永亮, 李韧, 赵林 , 等. 多年冻土区活动层冻融状况及土壤水分运移特征[J]. 冰川冻土, 2014,36(2):237-247.
|
[13] |
王康 . 全球变化条件下地表冻融循环及多年冻土热状态响应研究[D].兰州:兰州大学, 2015.
|
[14] |
Chen A, Parsekian A D, Schaefer K , et al. Ground-penetrating radar-derived measurements of active-layer thickness on the landscape scale with sparse calibration at Toolik and Happy Valley,Alaska[J]. Geophysics, 2016,81(2):H1-H11.
|
[15] |
Du E, Zhao L, Wu T , et al. The relationship between the ground surface layer permittivity and active-Layer thawing depth in a Qinghai-Tibetan Plateau permafrost area[J]. Cold Regions Science & Technology, 2016,126:55-60.
|
[16] |
王子龙 . 季节性冻土区雪被-土壤联合体水热耦合运移规律及数值模拟研究 [D].哈尔滨:东北农业大学, 2010.
|
[17] |
郭占荣, 荆恩春, 聂振龙 , 等. 冻结期和冻融期土壤水分运移特征分析[J]. 水科学进展, 2002,13(3):298-302.
|
[18] |
王维真, 吴月茹, 晋锐 , 等. 冻融期土壤水盐变化特征分析——以黑河上游祁连县阿柔草场为例[J]. 冰川冻土, 2009,31(2):84-90.
|
[19] |
王春雷, 张戎垦, 赵晓萌 , 等. 季节冻土区高速铁路路基冻胀监测系统及冻胀规律研究[J]. 冰川冻土, 2014,36(4):962-968.
|
[20] |
曾昭发, 刘四新, 王者江 , 等. 探地雷达方法原理及应用[M]. 北京: 科学出版社, 2006.
|
[21] |
Jol H M . Ground penetrating radar theory and applications[M]. Elsevier Science, 2009.
|
[22] |
Ikelle L T, Yung S K, Daube F . 2-D Random Media with Ellipsoidal Correlation Functions[J]. Geophysics, 1993,58(9):1359-1372.
|
[23] |
Jiang Z, Zeng Z, Li J , et al. Simulation and Analysis of GPR Signal Based on Stochastic Media Model with an Ellipsoidal Autocorrelation Function[J]. Journal of Applied Geophysics, 2013,99(3):91-97.
|
[24] |
马灵伟, 顾汉明, 赵迎月 , 等. 应用随机介质正演模拟刻画深水区台缘礁碳酸盐岩储层[J]. 石油地球物理勘探, 2013,48(4):583-590.
|
[25] |
李静 . 随机等效介质探地雷达探测技术和参数反演[D].长春:吉林大学, 2014.
|
[26] |
王子龙, 付强, 姜秋香 , 等. 季节性冻土区不同时期土壤剖面水分空间变异特征研究[J]. 地理科学, 2010,17(5):772-776.
|
[27] |
李丽英, 张立新, 赵少杰 . 冻土介电常数的实验研究[J]. 北京师范大学学报:自然科学版, 2007,43(3):241-244.
|
[28] |
Kobayashi T, Oya H, Ono T . A-scope Analysis of Subsurface Radar Sounding of Lunar Mare Region[J]. Earth,Planets and Space, 2002,54(10):973-982.
|
[29] |
任新成 . 粗糙面电磁散射及其与目标的复合散射研究[D].西安:西安电子科技大学, 2008.
|
[30] |
胡俊, 俞祁浩, 游艳辉 , 等. 探地雷达在多年冻土区正演模型研究及应用[J]. 物探与化探, 2012,36(3):457-461.
|
[31] |
刘四新, 曾昭发, 徐波 . 三维频散介质中地质雷达信号的FDTD数值模拟[J]. 吉林大学学报, 2006,36(1):123-127.
|
[32] |
李静, 曾昭发, 吴丰收 , 等. 探地雷达三维高阶时域有限差分法模拟研究[J]. 地球物理学报, 2010,53(4):974-981.
|
[33] |
冯德山, 陈承申, 戴前伟 . 基于UPML边界条件的交替方向隐式有限差分法GPR全波场数值模拟[J]. 地球物理学报, 2010,53(10):2484-2496.
|
[1] |
ZHANG Si-Wei, WU Rong-Xin, HAN Zi-Ao, WU Hai-Bo. The application of bilateral filtering to denoise processing of ground penetrating radar data[J]. Geophysical and Geochemical Exploration, 2021, 45(2): 496-501. |
[2] |
LI Jing-Xiang, ZHAO Ming, LAI Hao, XIONG Shuang-Cheng, TANG Yang. Imaging detection and recognition technology of underground cable based on ground penetrating radar[J]. Geophysical and Geochemical Exploration, 2020, 44(6): 1482-1489. |
|
|
|
|