1. Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China 2. Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone,CAGS, Langfang 065000, China
The Tianyu Cu-Ni deposit is located in the Gobi desert area. The geochemical characteristics of elements such as Ni, Co, Fe, Mg and Cu in the geogas were statistically analyzed by geogas survey at the scale of 1:10 000 in the range of 2 km 2 in the Tianyu Cu-Ni deposit. According to the indication effect of each element on mineralization and geophysical and geochemical anomalies, five comprehensive geochemical anomalies were delineated, and Ni,Co,Cu,Fe,V indicators can effectively indicate the position of the orebody, thus exhibiting good prospecting effect in the Tianyu Cu-Ni deposit. The survey work provides new ideas for mineral exploration in the Gobi desert area.
Wei HAN,Hua-Zhong LIU,Cheng-Wen WANG, et al. Geochemical characteristics and indication significance of seogas survey in the Tianyu Cu-Ni deposit of Hami[J]. Geophysical and Geochemical Exploration,
2019, 43(3): 502-508.
Generalized geological map of Tianyu Cu-Ni deposit and distribution of geogas samplings
岩体名称
19号基性—超基性岩体
20号基性—超基性岩体
形态
不规则状
脉状
长度
85 m
1 140 m
最大宽度
16 m
66 m
蚀变特征
强纤闪石化、绿泥石化、弱绢云母化、高岭土化
强纤闪石化、绢云母化、高岭土化、金云母化、滑石化、伊丁石化
矿化特征
褐铁矿化、弱孔雀石化
褐铁矿化、孔雀石化
Characteristics of basic-ultrabasic rock bodies of Tianyu Cu-Ni deposit
Diagram of geogas sampling device
元素
均值
标准差
变异系数
元素
均值
标准差
变异系数
Au
0.005
0.001
0.278
Dy
0.004
0.001
0.182
Ag
0.006
0.001
0.119
Er
0.005
0.001
0.214
Bi
0.011
0.001
0.121
Eu
0.004
0.001
0.23
Co
0.009
0.005
0.511
Gd
0.019
0.004
0.188
Cu
0.743
0.24
0.323
La
0.055
0.002
0.044
Fe
0.031
0.003
0.095
Nd
0.044
0.005
0.105
Mg
0.034
0.003
0.085
Pr
0.012
0.001
0.077
Ni
0.113
0.04
0.352
Sm
0.01
0.003
0.256
Pb
1.22
0.031
0.026
Tb
0.002
0.001
0.333
V
0.084
0.01
0.119
Y
0.018
0.001
0.074
Zn
3.48
3.44
0.989
Yb
0.002
0.001
0.333
Ce
0.099
0.006
0.064
Geochemical characteristic parameters of element contents of geogas bsorbents
元素
平均值
背景值
中位数
标准离差
变化系数
最大值
最小值
Au
0.011
0.006
0.006
0.029
2.62
0.447
0.001
Ag
0.057
0.021
0.013
0.251
4.4
3.6
0.004
Bi
0.014
0.012
0.012
0.012
0.862
0.17
0.009
Co
0.051
0.027
0.025
0.137
2.70
1.52
0.007
Cu
2.82
1.28
1.24
13.3
4.72
246
0.63
Fe
0.073
0.047
0.05
0.145
1.99
1.76
0.03
Mg
0.087
0.05
0.05
0.37
4.25
6.4
0.031
Ni
0.487
0.257
0.23
1.63
3.34
29.3
0.1
Pb
1.80
1.36
1.35
2.53
1.40
41.7
1.06
V
0.152
0.102
0.103
0.282
1.85
2.99
0.064
Zn
13.8
10.5
9.81
34.2
2.47
606
2.41
Ce
0.259
0.118
0.12
1.28
4.95
19.3
0.09
Dy
0.017
0.006
0.006
0.102
5.95
1.53
0.002
Er
0.014
0.005
0.005
0.081
5.87
1.21
0.002
Eu
0.015
0.005
0.006
0.081
5.34
1.38
0.002
Gd
0.049
0.022
0.021
0.247
5.04
3.77
0.011
Ho
0.004
0.001
0.001
0.022
6.31
0.333
未检出
La
0.151
0.066
0.066
0.77
5.11
11.6
0.052
Lu
0.002
0.001
0.001
0.015
8.03
0.226
未检出
Nd
0.124
0.055
0.054
0.614
4.94
9.2
0.037
Pr
0.032
0.014
0.014
0.162
5.05
2.45
0.01
Sm
0.026
0.012
0.012
0.127
4.93
1.9
0.004
Tb
0.005
0.002
0.002
0.025
5.41
0.39
0.001
Tm
0.002
0.001
0.001
0.012
7.47
0.186
未检出
Y
0.093
0.026
0.025
0.629
6.76
9.3
0.016
Yb
0.011
0.003
0.003
0.085
7.50
1.28
未检出
Geochemical parameters of geogas samples in Tianyu Cu-Ni deposit
Anomaly distribution map of geogas elements in Tianyu Cu-Ni deposit 1—granitic mylonite; 2—granitic gneiss; 3—sericite-quartz schist; 4—migmatite; 5—basic-ultrabasic rock; 6—gabbro; 7—diorite; 8—gneiss granite; 9—mylonitized granite; 10—main orebody; 11—fault; 12—anomal number; 13—anomaly in 1:50 000 geochemical exploration; 14—magnetic anomalies in 1:10 000 geophysical exploration
[1]
Kristiansson K, Malmqvsit L . Trace elements in the geogas and their relation to bedrock composition[J]. Geoexporation, 1987,24:517-534.
[2]
Malqvist L, Kristansson K . Experiment evidence for an ascending micro-flow of geogas in the ground[J]. Earth and Planetary Science Letters, 1984,70:407-416.
Liu Y H, Ren T X, Wang M Q , et al. The results of geogas survey in hidden mining areas[J]. Geological Exploration for Non-ferrous Metals, 1995,4(6):355.
Wang M Q, Gao Y Y, Zhang D E , et al. Breakthrough in mineral exploration using geogas survey in the basin area of northern Qilian region and its significance[J]. Geophysical & Geochemical Exloration, 2006,30(1):7-12.
Tang J R, Yang Z F, Wang M Q , et al. Method and application of geogas measremengts[J]. Geophysical & Geochemical Exloration , 2004, 28(3):193(2):128-138.
Wang X Q, Xie X J, Lu Y L . Dynamic collection of geogas and its preliminary application in search for concealed deposits[J]. Geophysical & Geochemical Exloration, 1995,3(19):161-171.
Ding X T, Zhou S C, Zhao C J , et al. The geogas and soil geochemical characteristics of Pb-Zn deposit in dongshan the western of Yunnan province[J]. Metal Mine, 2013,449(11):95-99.
Yang Y X, Liu Q C, Wan J . Research of simulation experiment and technique in applying geogas methed to sandstone uranium deposits exploration[J]. Journal of East China Geological Institute, 2001,4(24):271-272.
Tong C H, Li J C, Ge L Q , et al. Transportation of the ore-forming metters by ascending gas flows in the crust and the mechanism of geogas prospecting[J]. Mineral Petrol, 1997,17(3):83-88.
Wang M Q, Gao Y Y . Tracing source of geogas with lead isotopes:A case study in Jiaolongzhang Pb-Zn deposit,Gansu province[J]. Geochimica, 2007(04):391-399.
Ge L Q, Tong C H . The character of geogas anomaly on consealed faults and its mechanism[J]. Journal of Chengdu University of Technology, 1997,24(3):29-35.
Lu R Q, Wang D Y, Liu Y W , et al. Experimental geogas survey in the xinchang gas field of western Sichuan[J]. Geophysical & Geochemical Exloration, 2008,6(32):678-681.
Xie K W, Zhou S C, Zhang W Y , et al. Using geogas field to prospect the concealed hot springs zone-taking the warm water village as an example in Guangdong[J]. Science Technology and Engineering, 2015,15(30):9-13.