|
|
Prediction and application of coalbed methane content based on gray system and logging method |
GUO Jian-Hong1,2( ), ZHANG Zhan-Song1,2( ), ZHANG Chao-Mo1,2, CHEN Zhi-Ruo2, ZHANG Peng-Hao1,2, TANG Xiao1,2, QIN Rui-bao3, YU Jie3 |
1.College of Physics and Petroleum Resources, Yangtze University, Wuhan 430100, China 2.Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan 430100, China 3.CNOOC Research Institute, Beijing 100027, China |
|
|
Abstract The content of coalbed methane is an important parameter in evaluating coalbed reservoir. In this paper, the gray system was applied to the coalbed logging curve, the improved slope correlation method was used to analyze the logging curve series which are sensitive to the coalbed gas content. The gray multivariate static model GM (0,N) was used to predict the coalbed methane content in the sequence of positive correlation logging curves. Taking Qinshui Coal Field as an example, the authors compared the gray multivariate static model prediction results with the results of the multiple regression model analysis, and studied and analyzed the practicability of the gray multivariate static model. The results show that the improved association analysis of gray incidence can fully develop the relationship between logging curve and coalbed methane content, and that the GM(0,N) prediction model is more accurate and more robust than the multiple regression model in that it can effectively predict the coalbed methane content curve when the sample data is relatively small. The result is reliable and has practical application value.
|
Received: 02 December 2019
Published: 26 October 2020
|
|
Corresponding Authors:
ZHANG Zhan-Song
E-mail: 87942024@qq.com;Zhangzhs@yangtzeu.edu.cn
|
|
|
|
样号 | 测试气量 /(m3·t-1) | 深度曲线 /m | 自然伽马 /API | 自然电位 /mV | 补偿密度 /(g·cm-3) | 声波时差 /(μs·m-1) | 补偿中子 /(V·V-1) | 深电阻率 /(Ω·m) | 浅电阻率 /(Ω·m) | 1 | 18.58 | 974.26 | 37.5 | 65 | 1.41 | 411 | 0.50 | 8174 | 5524 | 2 | 16.59 | 974.50 | 50.4 | 55 | 1.47 | 413 | 0.51 | 7594 | 5225 | 3 | 16.99 | 976.99 | 49.1 | 28 | 1.25 | 414 | 0.47 | 1620 | 1641 | | | | | $\vdots$ | | | | | | 40 | 17.17 | 1239.27 | 24.0 | 83 | 1.54 | 443 | 0.46 | 159 | 237 |
|
Test gas content and logging standardization parameters of coal seam 15
|
|
Relationship between gas content of coal reservoir and logging parameters
|
| 自然伽马 | 深电阻率 | 补偿密度 | 声波时差 | 拟合优度 | 0.522 | 0.227 | 0.413 | 0.408 | 关联序 | 1 | 4 | 2 | 3 |
|
Linear regression correlation coefficient results
|
| γ(x0,x1) 深度曲线 | γ(x0,x2) 自然伽马 | γ(x0,x3) 自然电位 | γ(x0,x4) 声波时差 | γ(x0,x5) 补偿密度 | γ(x0,x6) 补偿中子 | γ(x0,x7) 深电阻率 | γ(x0,x8) 浅电阻率 | 关联度 | 0.173 | 0.368 | 0.097 | 0.524 | 0.517 | 0.229 | 0.384 | -0.085 | 关联序 | 6 | 4 | 7 | 1 | 2 | 5 | 3 | 8 |
|
The calculation results of slope correlation degree in this paper
|
|
Predicted gas content curve of coal seam 15 in well X
|
|
Relationship between the prediction of gas content and the measurement of gas content in coal seam
|
样品号 | 测试含气量/(m3·t-1) | 预测含气量/(m3·t-1) | 绝对误差/(m3·t-1) | 平均相对误差/% | 26 | 15.34 | 16.68 | 1.34 | 8 | 27 | 19.33 | 17.29 | 2.04 | 10 | 28 | 17.98 | 16.98 | 1.00 | 5 | 29 | 17.76 | 18.21 | 0.45 | 2 | 30 | 16.56 | 17.14 | 0.58 | 3 | 31 | 13.10 | 14.58 | 1.48 | 11 | 32 | 19.57 | 18.49 | 1.08 | 5 | 33 | 13.76 | 15.48 | 1.72 | 12 | 34 | 12.69 | 13.81 | 1.12 | 8 | 35 | 10.29 | 10.60 | 0.31 | 3 | 36 | 12.54 | 12.75 | 0.21 | 1 | 37 | 13.54 | 13.58 | 0.04 | 0 | 38 | 17.17 | 16.55 | 0.62 | 3 | 39 | 13.24 | 12.81 | 0.43 | 3 | 40 | 16.24 | 16.20 | 0.04 | 0 | 平均值 | | | 0.83 | 4.9 |
|
The relationship between testing gas content and grey prediction gas content
|
建模个数 | 不同深度点对应的气含量预测值/(m3·t-1) | 绝对误差 /(m3·t-1) | 平均相对误差 /% | 1 238.67 m | 1 240.82 m | 1 347.34 m | 1 348.54 m | 1 349.44 m | 6 | 16.48 | 19.35 | 23.53 | 22.18 | 20.39 | 2.67 | 14.9 | 8 | 14.75 | 17.63 | 21.63 | 20.04 | 19.2 | 1.77 | 10.0 | 10 | 13.35 | 15.37 | 21.25 | 18.07 | 20.40 | 1.56 | 8.7 | 12 | 15.95 | 16.94 | 21.93 | 19.70 | 21.2 | 1.64 | 8.9 | 14 | 16.98 | 17.42 | 21.90 | 20.04 | 21.3 | 1.62 | 8.8 | 16 | 15.84 | 15.92 | 21.34 | 18.72 | 19.41 | 0.96 | 5.3 | 18 | 16.78 | 16.38 | 21.44 | 18.66 | 18.87 | 0.87 | 4.5 | 20 | 17.03 | 16.65 | 21.54 | 19.06 | 19.53 | 0.84 | 4.6 | 气含量 | 17.26 | 16.20 | 19.35 | 17.76 | 19.57 | | |
|
GM(0,7) model predicts the deep CBM content based on different sample numbers
|
|
The relationship between the number of sample data and the average error of prediction
|
[1] |
赵庆波. 中国煤层气地质特征及勘探新领域[J]. 天然气工业, 2004,24(5):4-7.
|
[1] |
Zhao Q B. Geological features of the coalbed methane in China and its new exploration domains[J]. Natural Gas Industry, 2004,24(5):4-7.
|
[2] |
万玉金, 曹雯. 煤层气单井产量影响因素分析[J]. 天然气工业, 2005,25(1):124-126.
|
[2] |
Wan Y J, Cao W. Analysis on production affecting factors of single well for coalbed gas[J]. Natural Gas Industry, 2005,25(1):124-126.
|
[3] |
孟召平, 田永东, 雷旸. 煤层含气量预测的BP神经网络模型与应用[J]. 中国矿业大学学报, 2008,37(4):28-33.
|
[3] |
Meng Z P, Tian Y D, Lei Y. Prediction models of coalbed gas content based on BP neural networks and its applications[J]. Journal of China University of Mining & Technology, 2008,37(4):28-33.
|
[4] |
连承波, 赵永军, 李汉林, 等. 煤层含气量的主控因素及定量预测[J]. 煤炭学报, 2005,30(6):726-729.
|
[4] |
Lian C B, Zhao Y J, Li H L, et al. Main controlling factors analysis and prediction of coalbed gas content[J]. Journal of China Coal Societ, 2005,30(6):726-729.
|
[5] |
曾凡武, 薛晓辉. 煤层气含气量测定影响因素分析[J]. 中国煤层气, 2012,9(3):24-26.
|
[5] |
Zeng F W, Xue X H. Analysis of factors influencing measurement of gas content[J]. China Coalbed Methane, 2012,9(3):24-26.
|
[6] |
邓泽, 刘洪林, 康永尚. 煤层气含气量测试中损失气量的估算方法[J]. 天然气工业, 2008,28(3):85-86.
|
[6] |
Deng Z, Liu H L, Kang Y S. Estimation methods of lost gas in coal bed gas content testing[J]. Natrual Gas Industry, 2008,28(3):85-86.
|
[7] |
娄剑青. 影响煤层气井产量的因素分析[J]. 天然气工业, 2004,24(4):62-64.
|
[7] |
Lou J Q. Factors of influencing production of coal bed gas wells[J]. Natrual Gas Industry, 2004,24(4):62-64.
|
[8] |
张胜利, 陈晓东. 控制煤层气含量及可采性的主要地质因素[J]. 天然气工业, 1997,17(4):15-19.
|
[8] |
Zhang S L, Chen X D. Geological controls on content and producibility of coal seam gas[J]. Natural Gas Industry, 1997,17(4):15-19.
|
[9] |
高波, 马玉贞, 陶明信, 等. 煤层气富集高产的主控因素[J]. 沉积学报, 2003,21(2):345-349.
|
[9] |
Gao B, Ma Y Z, Tao M X, et al. Main controlling factors analysis of enrichment condition of coalbed methane[J]. Acta sedimentologica Sinica, 2003,21(2):345-349.
|
[10] |
吴永平, 李仲东, 王允诚. 煤层气储层异常压力的成因机理及受控因素[J]. 煤炭学报, 2006,31(4):475-479.
|
[10] |
Wu Y P, Li Z D, Wang Y C. The formation mechanisms of abnormal pressure and factor in control of the coal bed gas in Qinshui Basin[J]. Journal of China Coal Society, 2006,31(4):475-479.
|
[11] |
叶建平, 武强, 王子和. 水文地质条件对煤层气赋存的控制作用[J]. 煤炭学报, 2001,26(5):63-67.
|
[11] |
Ye J P, Wu Q, Wang Z H. Controlled characteristics of hydrogeological conditions on the coalbed methane migration and accumulation[J]. Journal of China Coal Society, 2001,26(5):63-67.
|
[12] |
董红, 侯俊胜, 李能根, 等. 煤层煤质和含气量的测井评价方法及其应用[J]. 物探与化探, 2001,25(2):138-143.
|
[12] |
Dong H, Hou J S, Li N G, et al. The logging evaluation method for coal quality and methane[J]. Geophysical and Geochemical Exploration, 2001,25(2):138-143.
|
[13] |
李贵红, 张鸿, 崔永君, 等. 基于多元逐步回归分析的煤储层含气量预测模型——以沁水盆地为例[J]. 煤田地质与勘探, 2005,33(2):22-25.
|
[13] |
Li G H, Zhang H, Cui Y J, et al. A predictive model of gas content in coal reservoirs based on multiple stepwise regression analysis: a case study from Qinshui Basin[J]. Coal Geology & Exploration, 2005,33(2):22-25.
|
[14] |
Kim A G. Estimating methane content of bituminous coal beds from adsorption data[R]. United States Department of the Interior, Report of Investigations-Bureau of Mines 8245, 1977, 1-11.
|
[15] |
Ahmed U, Johnston D, Colson L. An advanced and integrated approach to coal formation evaluation[C]// SPE22736, 1991: 755-770.
|
[16] |
Hawkins J M, Schraufnagel R A, Olszewsk A J. Estimating coalbed gas content and sorption isotherm using well log data[C]// SPE24905, 1992: 491-501.
|
[17] |
刘荣芳, 王建功, 刘文华, 等. 基于煤岩结构的煤层含气量测井评价方法[J]. 中国煤层气, 2014,11(4):22-25.
|
[17] |
Liu R F, Wang J G, Liu W H, et al. CBM logging evaluation method based on coal seam structure[J]. China Coal bed Methane, 2014,11(4):22-25.
|
[18] |
孟召平, 郭彦省, 张纪星, 等. 基于测井参数的煤层含气量预测模型与应用[J]. 煤炭科学技术, 2014,42(6):25-30.
|
[18] |
Meng Z P, Guo Y S, Zhang J X, et al. Application and prediction model of coalbed methane content based on logging parameters[J]. Coal Science and Technology, 2014,42(6):25-30.
|
[19] |
邵先杰, 孙玉波, 孙景民, 等. 煤岩参数测井解释方法——以韩城矿区为例[J]. 石油勘探与开发, 2013,40(5):559-565.
|
[19] |
Shao X J, Sun Y B, Sun J M, et al. Logging interpretation of coal petrologic parameters: A case study of Hancheng mining area[J]. Petroleum Exploration and Development, 2013,40(5):559-565.
|
[20] |
黄兆辉, 邹长春, 杨玉卿, 等. 沁水盆地南部TS地区煤层气储层测井评价方法[J]. 现代地质, 2012,26(6):1275-1282.
|
[20] |
Huang Z H, Zou C C, Yang Y Q, et al. Coal bed methane reservoir evaluation from wireline logs in TS District, southern Qinshui Basin[J]. Geoscience, 2012,26(6):1275-1282.
|
[21] |
金泽亮, 薛海飞, 高海滨, 等. 煤层气储层测井评价技术及应用[J]. 煤田地质与勘探, 2013,41(2):42-45.
|
[21] |
Jin Z L, Xue H F, Gao H B, et al. Technology for evaluation of CBM reservoir logging and its application[J]. Coal Geology & Exploration, 2013,41(2):42-45.
|
[22] |
曹军涛, 赵军龙, 王轶平, 等. 煤层气含量影响因素及预测方法[J]. 西安石油大学学报:自然科学版, 2013,28(4):28-34, 94.
|
[22] |
Cao J T, Zhao J L, Wang Y P, et al. Review of influencing factors and prediction methods of gas content in coal seams and prospect of prediction methods[J]. Journal of Xi’an Shiyou University:Natural Science Edition, 2013,28(4):29-34, 94.
|
[23] |
侯俊胜, 王颖. 神经网络方法在煤层气测井资料解释中的应用[J]. 地质与勘探, 1999,35(3):41-45.
|
[23] |
Hou J S, Wang Y. Interpretation of well logging data for coalbed methane using BP neural network[J]. Geology and Prospecting, 1999,35(3):41-45.
|
[24] |
潘和平, 黄智辉. 煤层含气量测井解释方法探讨[J]. 煤田地质与勘探, 1998,26(2):58-60.
|
[24] |
Pan H P, Huang Z H. Discussion on the interpretation method of coalbed methane content[J]. Coal Geology & Exploration, 1998,26(2):58-60.
|
[25] |
吴东平, 吴春萍, 岳晓燕. 煤层气测井评价的神经网络技术[J]. 天然气勘探与开发, 2001,24(1):31-34.
|
[25] |
Wu D P, Wu C P, Yue X Y. Neural network of coal bed gas logging evaluation[J]. Natural Gas Exploration & Development, 2001,24(1):31-34.
|
[26] |
连承波, 赵永军, 李汉林, 等. 基于支持向量机回归的煤层含气量预测[J]. 西安科技大学学报, 2008,28(4):707-709.
|
[26] |
Lian C B, Zhao Y J, Li H L, et al. Prediction of coal bed gas content based on support vector machine regression[J]. Journal Center of Xi’an University of Science and Technology, 2008,28(4):707-709.
|
[27] |
肖新平, 谢录臣, 黄定荣. 灰色关联度计算的改进及其应用[J]. 数理统计与管理, 1995,14(5):27-30.
|
[27] |
Xiao X P, Xie L C, Huang D R. A modified computation method of grey correlation degree and its application[J]. Journal of Applied Statistics and Management, 1995,14(5):27-30.
|
[28] |
马保国, 成国庆. 一种相似性关联度公式[J]. 系统工程理论与实践, 2000(7):69-71.
|
[28] |
Ma B G, Cheng G Q. A formula of similarity correlation degree[J]. Systems Engineering-Theory & Practice, 2000(7):69-71.
|
[29] |
张绍良, 张国良. 灰色关联度计算方法比较及存在问题分析[J]. 系统工程, 1996,14(3):45-49.
|
[29] |
Zhang S L, Zhang G L. Comparison between computation modles of grey interconnet degree and analysis on their shortages[J]. Systems Engineering, 1996,14(3):45-49.
|
[30] |
李明凉. 灰色关联度新判别准则及其计算公式[J]. 系统工程, 1998,16(1):68-70.
|
[30] |
Li M L. A new descriminant byelaw for grey interconnet degree and its calculation formulas[J]. Systems Engineering, 1998,16(1):68-70.
|
[31] |
田敏, 赵永军, 颛孙鹏程. 灰色系统理论在煤层气含量预测中的应用[J]. 煤田地质与勘探, 2008,36(2):24-27.
|
[31] |
Tian M, Zhao Y J, Zhuansun P C. Application of grey system theroy in prediction of coalbed methane content[J]. Coal Geology & Exploration, 2008,36(2):24-27.
|
[32] |
张诚, 江琼. 基于GM(0,N)和RBF的小样本时程数据预测[J]. 计算机工程与应用, 2005(5):62-64.
|
[32] |
Zhang C, Jiang Q. The prediction of small sample time-displacement data based on GM(0,N) and RBF[J]. Computer Engineering and Applications, 2005(5):62-64.
|
[33] |
夏宏泉, 谈德辉, 梁常宝, 等. 基于灰色神经网络的测井预测地层破裂压力[J]. 西南石油学院学报, 1996,18(4):1-8.
|
[33] |
Xia H Q, Tan D H, Liang C B, et al. Prediction of formation fracture pressure based on grey artificial neural network logging[J]. Journal of Southwest Petroleum Institute, 1996,18(4):1-8.
|
[34] |
梁亚林, 原文涛. 测井预测煤层气含量及分布规律——以山西省沁水煤田为例[J]. 物探与化探, 2018,42(6):1144-1149.
|
[34] |
Liang Y L, Yuan W T. The prediction of the content and distribution of coalbed gas: a case study in the Qinshui coalfield based on logging[J]. Geophysical and Geochemical Exploration, 2018,42(6):1144-1149.
|
[35] |
贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012,39(2):129-136.
|
[35] |
Jia C Z, Zheng M, Zhang Y F. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012,39(2):129-136.
|
[36] |
国土资源部油气资源战略研究中心. 全国石油天然气资源评价[M]. 北京: 中国大地出版社, 2010.
|
[36] |
Ministry of Land and Resources, Strategic Research Center of Oil and Gas Resources. National oil and gas resource assessment[M]. Beijing: China Land Press, 2010.
|
[37] |
张胜利, 陈晓东. 控制煤层气含量及可采性的主要地质因素[J]. 天然气工业, 1997,17(4):15-19.
|
[37] |
Zhang S L, Chen X D. Geological controls on content and producibility of coal seam gas[J]. Natural Gas Industry, 1997,17(4):15-19.
|
[38] |
雍世和, 张超馍. 测井数据处理与综合解释[M]. 东营: 中国石油大学出版社, 2007: 134-139.
|
[38] |
Yong S H, Zhang C M. Logging data processing and comprehensive interpretation[M]. Dongying: China University of Petroleum Press, 2007: 134-139.
|
[1] |
LIU Wei-Nan, ZHANG Chao-Mo, ZHU Lin-Qi, HU Song, KONG Zheng, DENG Rui. A new method for TOC logging evaluation in shale gas for horizontal well[J]. Geophysical and Geochemical Exploration, 2021, 45(2): 423-431. |
[2] |
GUO Jian-Hong, ZHANG Zhan-Song, ZHANG Chao-Mo, ZHOU Xue-Qing, XIAO Hang, QIN Rui-Bao, YU Jie. The exploration of predicting CBM content by geophysical logging data: A case study based on slope correlation random forest method[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 18-28. |
|
|
|
|