The application of comprehensive geophysical method to the exploration of uranium deposits in the paleo-Shibei area of Shanghang Basin
LI Ying-Bin1,2(), XIE Ming-Hong1,2, ZHANG Zhan-Bin1,2, LI Yi1,2, WEI Bin1,2, ZHANG Wei1,2
1. Airborne Survey and Remote Sensing Center of Nuclear Industry, Shijiazhuang 050002, China 2. Key Laboratory of Uranium Resources Geophysical Exploration Technology, China Nuclear Industry Group Company, Shijiazhuang 050002, China
The paleo-Shibei area has a good geological background of uranium mineralization, and some mineralization spots and uranium anomalies have been found. The previous work was mainly focused on the surrounding and shallow parts of the mineralization spots, and the evaluation of the overall metallogenic environment and the understanding of the deep metallogenic conditions in the study area were insufficient. The authors briefly introduced the working methods of soil radon, ground gamma energy spectrum and audio frequency magnetotelluric survey, analyzed the uranium metallogenic environment in the study area by comprehensive geophysical survey, delineated the approximate position of uranium ore anomaly on the surface by carrying out soil radon and ground gamma energy spectrum survey, and found the paleo-rock back of ore-controlling fault by carrying out audio frequency magnetotelluric survey (AMT). The characteristics of the development of the fault and ore-controlling strata of Shimaoshan Group were determined, and the inferred interpretation data were verified by drilling, which provides a reference for the exploration of this type of uranium deposits.
Ying-Bin LI,Ming-Hong XIE,Zhan-Bin ZHANG, et al. The application of comprehensive geophysical method to the exploration of uranium deposits in the paleo-Shibei area of Shanghang Basin[J]. Geophysical and Geochemical Exploration,
2020, 44(6): 1283-1293.
Geological and survey line layout of the study area 1—upper Cretaceous; 2—lower Cretaceous fine-grained rhyolite; 3—lower Cretaceous biotite rhyolite; 4—lower Cretaceous tuffaceous sandstone; 5—lower Cretaceous andesite; 6—upper Jurassic dolomitic limestone; 7—upper Carboniferous sandstone conglomerate; 8—yanshanian granite porphyry; 9—yanshanian sub rhyolite; 10—measured fault; 11—compression torsion fault; 12—tensile fault; 13—inferred fault; 14—ground gamma energy spectrum, soil radon line and its number; 15—AMT line and its number
线号
点数
L01
50
123.78
2.36
9.86
55.96
17.33
29.83
12.6
0.47
3.66
L02
50
18.29
1.9
4.58
13.64
40.93
24.74
6.85
0.58
2.68
L03
50
34.69
2.39
12.39
38.12
16.61
27.69
2.73
0.46
1.33
L04
50
30.76
1.07
4.9
47.77
24.01
35.85
7.98
0.25
1.82
L05
60
45
2
7.09
39.9
17.8
28.79
7.2
0.7
2.06
L06
49
32.5
1.7
4.69
40.42
8.22
22.35
9.15
1.33
4.09
L07
50
14.87
1.86
5.73
41.07
6.41
21.22
4.77
0.89
2.62
L08
49
22.76
1.81
6.20
45.01
9.16
20.08
3.87
0.63
2.06
L09
50
10.8
1.57
4.23
43.33
9.05
17.52
4.27
1.07
2.34
L10
50
18.63
2.37
8.19
34.11
7.84
15.03
6.83
0.26
2.48
Statistical table of ground gamma spectrum measurement results
Distribution histogram of K, U, Th and their ratio of ground gamma spectrum in the study area
Isopleth map of activated uranium (a) and paleouranium abundance (b) in the study area 1—upper Cretaceous; 2—lower Cretaceous fine-grained rhyolite; 3—lower Cretaceous biotite rhyolite; 4—lower Cretaceous tuffaceous sandstone; 5—lower Cretaceous andesite; 6—upper Jurassic dolomitic limestone; 7—upper Carboniferous sandstone conglomerate; 8—yanshanian granite porphyry; 9—yanshanian sub rhyolite; 10—measured fault; 11—compression torsion fault; 12—tensile fault; 13—speculative fault
w(U)/10-6
w(Th)/10-6
w(K)/%
w(Rn)/(Bq·m-3)
背景值(X)
5.04
24.38
2.24
3560
标准偏差(S)
2.74
9.67
1.28
1400
变异系数(Cv)
0.54
0.40
0.57
0.39
偏高晕下限(X+S)
7.78
34.05
3.52
4960
高晕下限(X+2S)
10.52
43.72
4.8
6360
异常晕下限(X+3S)
13.26
53.39
6.08
7760
Statistical table of ground gamma spectrum and soil radon measurement data in the study area
Study area U, K, RN, Th contour plan 1—upper Cretaceous; 2—lower Cretaceous fine-grained rhyolite; 3—lower Cretaceous biotite rhyolite; 4—lower Cretaceous tuffaceous sandstone; 5—lower Cretaceous andesite; 6—upper Jurassic dolomitic limestone; 7—upper Carboniferous sandstone conglomerate; 8—yanshanian granite porphyry; 9—yanshanian sub rhyolite; 10—measured fault; 11—compression torsion fault; 12—tensile fault; 13—inferred fault; 14—circle abnormal halo and its number
Composite anomaly halo map of comprehensive geophysical exploration in the paleoshibei area 1—upper Cretaceous; 2—lower Cretaceous fine-grained rhyolite; 3—lower Cretaceous biotite rhyolite; 4—lower Cretaceous tuffaceous sandstone; 5—lower Cretaceous andesite; 6—upper Jurassic dolomitic limestone; 7—upper Carboniferous sandstone conglomerate; 8—yanshanian granite porphyry; 9—yanshanian sub rhyolite; 10—measured fault; 11—compression torsion fault; 12—tensile fault; 13—inferred fault; 14—circle U abnormal halo and its serial number; 15—circle K abnormal halo and its serial number; 16—circle Rn abnormal halo and its serial number
地层
岩性
代号
测量数(组)
电阻率/(Ω·m)
测量值范围
常见值范围
平均值
沙县组
泥岩
K2s
30
23~99
23~54
36
石帽山群
流纹岩
K1shb-4
34
403~1214
403~645
515
凝灰质细砂岩
K1s
30
63~365
98~240
167
凝灰质砂岩
K1shb-1
31
130~259
130~259
180
安山岩
K1sha
32
199~646
260~455
355
长林组
砾岩
J3c
31
135~487
170~350
253
黄龙组
灰岩
C2h
31
91~418
167~322
256
燕山期花岗斑岩
γ
31
103~1674
584~1175
800
Statistical table of measurement results of electrical parameters of rock
Lin D Y, Chen Z H. Metallogenic relationship between Shanghang pull apart basin and Zijinshan copper gold deposit, Fujian Province[J]. Journal of Xi’an University of Science and Technology. 2011,31(4):438-441.
Wang S X, Lin D Y. A preliminary study on the fault activity and the evolution of fault basin in the central and Western Fujian Province[J]. Fujian Earthquake, 1998,14(4):37-39.
Pan T W, Yuan Y, Lyu Y, et al. The early-cretaceous tectonic evolution and the spatial-temporal framework of magmatism-mineralization in Zijinshan ore-field,Fujian province[J]. Journal of Geomechanics, 2019,25(1):61-76.
Cao Q Y, Shan Y, Zhang E, et al. Application of ground gamma spectrometry measurements of uranium prospecting[J]. Geophysical and Geochemical Exploration, 2016,40(4):701-704.
Du H Y, Li X L, Wu X H. The effect of radioactive measurement for uranium and gold prospecting in Mazong Mountain area[J]. Geophysical and Geochemical Exploration, 2018,42(4):697-702.
Gao F, Zhang S T, Zou H, et al. The application of field gamma ray spectrometry to the prospecting for fluorite deposits in LingXi area of inner Mongolia[J]. Geophysical and Geochemical Exploration, 2013,42(4):206-211.
Kang X, Gou R X, Li G. Application of ground gamma-ray spectrometric survey to prospecting for salt lake-type potashdeposits[J]. Uranium Geology, 2005,21(1):45-51.
Liu J H, Wang Z W, Tian G, et al. Application of ground gamma-spectometry in geological mapping in shallow overburden areas[J]. Geology and Exploration, 2003,39(2):61-64.
Ye Y X, Deng J Z, Fang G X. The test research of high frequency magnetotelluric sounding to reservoir structure survey: taking the Fuzhou geothermal area in Jiangxi province as an example[J]. Geology and Exploration, 2011,47(4):649-653.
Xi Z Z, Feng W J, Li R X, et al. Effect of a low-resistivity cover on high-frequency magnetotelluric sounding[J]. Geology and Exploration, 2011,47(4):673-678.
Wang B, Chen X Q, Fan Z J, et al. Application of EH-4 continuous conductivitymeter to the study of ore-controlling structures in the Jinlongshan gold deposit of Zhen’ancountry,Shaanxi Province[J]. Geology and Exploration, 2014,50(3):564-571.
Tan H Y, Lyu J C, Liu G X, et al. Application of the EH-4 audio-frequency magnetotelluric method to search for concealed ore bodies in southeastern Hubei Province[J]. Geology and Exploration, 2011,47(6):1133-1141.
Liu J X, Tong X Z, Cheng Y T, et al. Application ofeffective appar ent resistivity in two-dimensional inversion of EH-4 date[J]. Geology and Exploration, 2008,44(3):56-59.
Zhang Z L, Zeng Q, Liu J M, et al. Application of GDP-32IIand EH-4 to prediction of mineralization at depth[J]. Geology and Exploration, 2010,46(3):470-475.
Wang S H, Pei R F, Zeng X H, et al. Further discussion on metallogenic series and metallogenic model of Zijinshan ore field[J]. Journal of Geology, 2009,83(2):145-155.