A processing technique of step effect in concentration-area multifractal method
HAN Deng-Hui1(), GAO Shun-Bao2(), ZHENG You-Ye1,2, CHEN Xin1, JIANG Xiao-Jia1, GU Yan-Rong1, YAN Chen-Chen1
1. Faculty of Earth Resource, China University of Geosciences(Wuhan), Wuhan 430074, China 2. Geological Survey, China University of Geosciences(Wuhan), Wuhan 430074, China
In the geochemical stream sediment survey, obvious differences in geochemical backgrounds of different geological bodies will affect the anomaly delineation and even lead to enhancement of anomalies irrelevant to mineralization, which weakens the mineralization-related weak anomalies. In this paper,the influence of step effect data on the fractal distribution form is discussed from the mathematical view based on the superposition law of fractal distribution, and an improved method for eliminating step effects in concentration-area fractal theory is proposed.In this method, the authors divide the study area based on geochemical background and then discuss fractal distribution forms respectively.The result shows that this method can accurately filter irrelevant lithology information and identify weak anomalies caused by mineralization in low-background sub-zone. It is applicable to the extraction of geochemical mineralization-related anomaly in the areas seriously affected by lithology.
Deng-Hui HAN,Shun-Bao GAO,You-Ye ZHENG, et al. A processing technique of step effect in concentration-area multifractal method[J]. Geophysical and Geochemical Exploration,
2020, 44(6): 1420-1428.
Tectonics and position regional map of Gangdise(a)[27], sketch map of regional mineral resources(b) and geological map(c) in Pujie area 1—upper Carboniferous-lower Permian Laga formation(C2P1l); 2—lower Permian Angjie formation(P1a); 3—Paleocene Dianzhong formation(E1d); 4—Eocene Nianbo formation(E2n); 5—upper Cretaceous Jiangba formation(K2jb); 6—intrusions; 7—Quaternary sediments(Q); 8—Duijiala reverse fault
参数
Au
Ag
Cu
Pb
Zn
Cd
W
Sn
Mo
Bi
As
Sb
Hg
P
Mn
B
平均值
0.85
0.10
13.57
55.21
77.90
0.19
3.45
5.79
0.89
0.60
36.77
1.91
0.03
400.26
628.07
54.30
标准差
2.63
0.77
14.17
148.16
84.91
0.38
5.44
16.75
1.17
1.49
367.71
3.59
0.01
229.32
478.59
30.56
富集系数
0.99
1.73
0.8
2.91
1.15
2.34
3.56
2.76
1.44
3.33
8.36
5.63
0.55
0.73
1.08
2.59
变异系数
3.11
7.45
1.04
2.68
1.09
2.02
1.58
2.89
1.31
2.49
10
1.88
0.42
0.57
0.76
0.56
地层
衬值
Au
Ag
Cu
Pb
Zn
Cd
W
Sn
Mo
Bi
As
Sb
Hg
P
Mn
B
第四系
1.32
1.33
1.27
1.15
1.16
1.17
1.02
1.55
0.98
1.12
1.52
1.18
1.03
1.19
1.11
1.07
昂杰组
1.6
1.17
1.72
1.04
1.29
1.17
1.03
1
1.06
1.24
1.24
1.24
1.2
1.52
1.23
1.61
晚白垩—始新世岩体
0.92
1.17
0.91
0.86
1.03
1
1.01
0.83
1.06
0.74
1.05
0.75
0.94
1.47
1.05
0.94
年波组
1.48
1.83
0.62
2.07
1.15
2.17
1.35
2.35
0.98
1.68
4.04
1.66
0.72
0.6
1.11
0.72
拉嘎组
2.02
1.25
1.83
1.07
1.36
1.28
1.09
1
0.99
1.16
1.27
1.11
1.29
1.52
1.14
1.38
典中组
0.9
2.17
0.63
1.66
1.07
1.5
1
1.1
1.28
0.96
0.92
1.13
0.91
0.75
1.02
0.77
Statistic characteristic geochemistry exploration data from Pujie area
Geochemistry contour map and background division from Pujie area a—geochemical contour map of Cu; b—geochemical contour map of Zn; c—geochemical contour map of Au; d—geochemical background division from Pujie area; 1—subzone of Carboniferous-Permian sedimentary strata;2—subzone of Paleogene volcanic strata
Concentration-area double logarithmic plot and section lines fitting patterns of Ag(a),Pb(b),Zn(c),Au(d),Sn(e),W(f) in whole-area from Pujie area
Concentration-area double logarithmic plot and section lines fitting patterns of Ag(a),Pb(b),Zn(c),Au(d),Sn(e),W(f) in subzone-1 from Pujie area
Concentration-area double logarithmic plot and section lines fitting patterns of Ag(a),Pb(b),Zn(c),Au(d),Sn(e),W(f) in subzone-2 from Pujie area
元素
全区
分区
元素
全区
分区
1区
2区
1区
2区
C编号
数值
C编号
数值
C编号
数值
C编号
数值
C编号
数值
C编号
数值
C1
0.069
C1
47.809
C1
0.369
C1
78.946
C1
76.254
C2
0.482
〗
C2
79.604
Ag
C2
1.599
Zn
C2
110.59
C2
109.262
C1
0.725
C3
241.29
C2
1.608
C3
363.735
C3
349.865
C3
19.204
C3
17.948
C4
780.408
C1
107.037
C1
109.4
C1
6.6796
C1
8.324
Pb
C2
409.117
C1
437.8
W
C1
6.475
C3
1036.91
C2
858.428
C2
13.377
C1
5.56
C1
2.926
C1
2.329
C1
2.072
C2
10.253
C2
4.808
Sn
C1
18.236
C1
12.306
Au
C2
26.379
C3
16.652
C2
66.535
C3
71.253
C2
180.047
C2
182.435
Inflect points of fitting straight line in concentration-area double logarithmic plot from two subzones and whole-area of Pujie area
Zhao R J. Application of different data processing method in geochemical exploration in the north Luanchuan[J]. Geology and Prospecting, 2006,42(3):67-71.
Li B, Li S M, Han T F, et al. The application of trend surface analysis to delineating geochemical anomalies in Longguan area and its effect[J]. Geophysical and Geochemical Exploration, 2012,36(2):202-207.
Zheng Y Y, Gao S B, Xue Z L, et al. A geochemical anomaly identification and evaluation method based on geological connotation[P]. China Patent,CN103345566A, 2013-10-09.
Zhou D. Unit-wise adjustment of geochemical background data and its significancein geochemical anomaly delineation[J]. Geophysical and Geochemical Exploration, 1986,10(4):263-273.
Shi C Y, Zhang J H, Huang X M. Subregion median contrast filtering method and recognition of weak anomalies[J]. Geophysical and Geochemical Exploration, 1999,23(4):250-257.
Wan N, Li S T, Zeng M Z. The application of the filtering method to the sieving and inspection of geochemical anomalies in the Wudang-Tongbai-Dabie metallogenic belt[J]. Geological Science and Technology Information, 2015,34(2):15-19.
Jin J J, Chen J G. A self-adaptive method of contrast filtering for extracting geochemical anomaly[J]. Geophysical and Geochemical Exploration, 2011,35(4):526-531.
[9]
Cheng Q, Agterberg F P, Ballantyne S B. The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration, 1994,51(2):118-120.
[10]
Gerd R. The fractal properties of geochemical landscapes as an indicator of weathering and transport processes within the Eastern Alps[J]. Journal of Geochemical Exploration, 2001,73(1):27-42.
Cheng Z Z, Xie X J. Influence of variation in element background values in rocks on metallogenic prognosis in geochemical maps[J]. Geology in China, 2006,33(2):416-417.
[12]
Zuo R G, Wang J, Chen G X, et al. Identification of weak anomalies: A multifractal perspective[J]. Journal of Geochemical Exploration, 2015,148:12-24.
[13]
Sun T, Liu L. Delineating the complexity of Cu-Mo mineralization in a porphyry intrusion by computational and fractal modeling: A case study of the Chehugou deposit in the Chifeng district, Inner Mongolia, China[J]. Journal of Geochemical Exploration, 2014,144:128-143.
[14]
Liu Y P, Zhu L X, Ma S M, et al. Constraining the distribution of elements and their controlling factors in the Zhaojikou Pb-Zn ore deposit, SE China, via fractal and compositional data analysis[J]. Applied Geochemistry, 2019,108:1-10.
Liu S B, Chen X, Guo X Z, et al. Fractal / multifractal modeling of geochemical exploration data in desert landscape area of Qaidam Basin[J]. Geophysical and Geochemical Exploration, 2016,40(3):550-556,560.
Ke X Z, Xie S Y, Gao S B, et al. Multifractal distribution patterns of geochemical data and its metallogenic significance:A case study in Bange region,Tibet[J]. Geological Science and Technology Information, 2015,34(1):148-153.
Shu Z M, Peng S L, Wang X J, et al. The application of multifractal method to the analysis of trace element geochemical data in the Gejiu granite depression zone,Yunnan Province[J]. Geophysical and Geochemical Exploration, 2009,33(3):327-330,344.
Xiang Z L, Gu X X, Wang E Y, et al. Geochemical fractal characteristics and prospecting prediction of the eastern section of the Boluokenu metallogenic belt,Xinjiang[J]. Journal of Henan Polytechnic University:Natural Science, 2019,38(4):49-57.
[19]
Zuo R G, Cheng Q M, Agterberg F P, et al. Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data:A case study from Gangdese, Tibet, western China[J]. Journal of Geochemical Exploration, 2009,101(3):225-235.
[20]
刘舒飞. 广西地球化学区带规律与异常分布分形解析[D]. 北京:中国地质大学(北京), 2017.
[20]
Liu S F. Fractal analysis on geochemical distribution and anomaly separation in the Guangxi autonomous region[D]. Beijing:China University of Geosciences, 2017.
Gong Q J, Zhang D H, Han D X. A simple method to determine the lower limit of element geochemical anomalies[J]. Earth and Environment, 2001,29(3):215-220.
[22]
Mandelbrot B B. The fractal geometry of nature[M]. New York:WH freeman, 1983: 468-469.
[23]
Korvin G. Fractal models in the earth sciences[M]. Amsterdam:Elsevier, 1992: 408.
Cheng Q M. Singularity-genralized self-similarity-fractal spectrum(3S) models[J]. Earth Science, 2006,31(3):337-348.
[25]
高顺宝. 西藏冈底斯西段铜铁多金属成矿作用与找矿方向[D]. 武汉:中国地质大学, 2015.
[25]
Gao S B, Copper-iron polymetal metallogenic regularity and election of targeet areas in the western of Gandise metallogenic belt, Tibet[D]. Wuhan:China University of Geosciences, 2015.
Wang L Q, Chen W, Lin X, et al. Coupling relationship between porphyry and skarn mineralization in Gangdise metallogenic belt: A case study of Bangpu deposit[J]. Acta Mineralogica Sinica, 2013,33(S2):838-839.
Luan K, Zheng Y Y, Gao S B, et al. Geological characteristics and fluid inclusions of Malangle copper deposit in Zhongba County,Tibet[J]. Geological Science and Technology Information, 2017,36(5):164-172.