|
|
High precision microtremor technology based on linear array and its application to the fine division of lithostratigraphy |
CHEN Ji-Wei1( ), ZHAO Dong-Dong1( ), ZONG Quan-Bing2, ZHANG Bao-Song1, DI Bing-Ye1, ZHU Hong-bing1, WANG Jia-Long1 |
1. Nanjing Center,China Geological Survey,Nanjing 210016,China 2. Fuzhou Metro Group Co. Ltd,Fuzhou 350000, China |
|
|
Abstract The microtremor survey method is a new environmental protection geophysical exploration technology with strong anti-interference ability, large detection depth and wide application range. It has been widely used in structure, boulder, karst cave and some other fields. However, the single point data acquisition method represented by circular array is limited by the field conditions. It is difficult for this method to achieve high-efficiency and high-density data acquisition of long profile. This paper presents an efficient data acquisition technology based on linear array with multiple coverage in order to solve this problem. Based on the idea of multiple coverage observation system in seismic exploration, the dispersion curves of multiple measurement points can be obtained by setting up a linear array at one time, which greatly improves the utilization rate of single station data acquisition. The feasibility and effectiveness of the technology were studied by applying the technology to the detection of boulders along subway of Fuzhou airport. The experimental results show that the high-efficiency data acquisition technology based on linear array multiple coverage greatly improves the efficiency and density of microtremor data acquisition, effectively improves the detection accuracy and detection depth, and provides a new array layout scheme for urban complex ground environment.
|
Received: 24 August 2020
Published: 29 April 2021
|
|
Corresponding Authors:
ZHAO Dong-Dong
E-mail: 648556511@qq.com;dongzhaochd@163.com
|
|
|
|
|
Work flow chart of microtremor detection
|
|
Observation diagram of microtremor detection array
|
|
Layout of linear array with multiple coverage observation a—layout of linear continuous array;b—layout of linear continuous densification array
|
采集时间/h | 圆形台阵测点/个 | 三角形台阵测点/个 | 菱形台阵测点/个 | 十字形台阵测点/个 | 线形多次覆盖台阵测点/个 | 1 | 2 | 2 | 2 | 2 | 13 | 2 | 4 | 4 | 4 | 4 | 26 | … | … | … | … | … | … | 8 | 16 | 16 | 16 | 16 | 104 |
|
Layout diagram of linear array multiple coverage array field data acquisition efficiency statistics of different array (24 acquisition stations)
|
|
Single point dispersion spectrum and dispersion curve of common array and linear array a—triangle;b—circular;c—L-shaped;d—linear
|
|
S-wave apparent velocity inversion profile of linear array and circular array
|
地层名称 | 横波波速/(m·s-1) | 物性标本数 | 速度层 | 最小值 | 最大值 | 平均值 | 杂填土 | 138.25 | 139.53 | 138.89 | 2 | A | 填砂 | 126.00 | 162.00 | 142.97 | 9 | 淤泥质土 | 156.00 | 163.00 | 159.50 | 2 | 粉细砂 | 140.19 | 212.77 | 174.30 | 24 | (泥质)粉细砂 | 208.00 | 251.00 | 230.80 | 5 | B | (含泥)粉细砂 | 224.00 | 247.00 | 234.50 | 4 | 粉质黏土 | 208.00 | 228.00 | 218.50 | 4 | 粉质黏土 | 221.00 | 323.00 | 276.23 | 23 | 残积砂质黏性土 | 235.00 | 368.00 | 288.20 | 5 | 花岗岩球状风化(孤石) | 500.00 | 580.00 | 540.00 | 3 | C | 砂土状强风化花岗岩 | 316.00 | 478.00 | 410.30 | 14 | 碎块状强风化花岗岩 | 523.00 | 687.00 | 608.33 | 6 | 中风化花岗岩 | 583.00 | 1136.00 | 922.54 | 28 | D | 中风化凝灰岩 | 863.00 | 998.00 | 921.00 | 3 |
|
S-wave velocity statistics of boreholes along subway line F1 in Fuzhou airport-Dahe section
|
|
Data acquisition site of linear array
|
|
Extraction of dispersion curve by SPAC method
|
|
Comprehensive interpretation profile of microtremor survey method a—S-wave apparent velocity inversion section of microtremor survey method; b—geological interpretation section
|
岩性界面 | 分类 | 井号 | 均方相对误差 | MJKZ-09-75 | MJKZ-09-77 | MJKZ-09-79 | MJKZ-09-81 | MJKZ-09-83 | MJKZ-09-85 | 淤泥 | 钻孔结果 | -5.4 | -0.35 | -2.23 | / | -1.54 | / | ±1.47 | | 推测结果 | -3.47 | -2.44 | -1.49 | / | -1.57 | / | | | 差值 | 1.93 | 2.09 | 0.74 | / | 0.03 | / | | 残积砂质黏性土 | 钻孔结果 | -14.4 | -12.55 | -11.53 | -11.13 | -11.14 | -15.47 | ±1.54 | | 推测结果 | -10.94 | -13.74 | -12.26 | -10.61 | -11.13 | -15.7 | | | 差值 | 3.46 | 1.19 | 0.73 | 0.52 | 0.01 | 0.23 | | 全风化花岗岩 | 钻孔结果 | -19.2 | -19.55 | -17.23 | -17.93 | -18.24 | -21.77 | ±2.44 | | 推测结果 | -16.45 | -23.37 | -18.69 | -18.22 | -21.61 | -22.1 | | | 差值 | 2.75 | 3.82 | 1.46 | 0.29 | 3.37 | 0.33 | | 强风化花岗岩 | 钻孔结果 | -33.7 | / | -31.43 | -26.33 | -27.04 | -28.27 | ±2.68 | | 推测结果 | -29.35 | / | -28.19 | -23.87 | -26.85 | -28.87 | | | 差值 | 4.35 | / | 3.24 | 2.46 | 0.19 | 0.6 | | 总体均方相对误差: ±2.03 |
|
Altitude accuracy statistics of inferred stratigraphic lithologic interface m
|
[1] |
韩伯文. 关于地微动若干问题的探讨[J]. 中国地质灾害与防治学报, 1991,2(S):22-26.
|
[1] |
Han B W. Discussion on probles of microseisim[J]. The Chinese Journal of Geological Hazard and Control, 1991,2(S):22-26.
|
[2] |
孙勇军, 徐佩芬, 凌甦群, 等. 微动勘查方法及其研究进展[J]. 地球物理学进展, 2009,24(1):326-334.
|
[2] |
Sun Y J, Xu P F, Ling S Q, et al. Microtremor survey method and its progress[J]. Progress in Geophysics, 2009,24(1):326-334.
|
[3] |
NafiToksöZ M, Lacoss R T. Microseisms: Mode structure and sources[J]. Science, 1968,159(3817):872-873.
|
[4] |
赵东. 被动源面波勘探方法与应用[J]. 物探与化探, 2011,34(6):759-764.
|
[4] |
Zhao D. Passive surface waves methods and applications[J]. Geophysical and Geochemical Exploration, 2011,34(6):759-764.
|
[5] |
Aki K. Space and time spectra of stationary stochastic waves with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 1957,35:415-456.
|
[6] |
Capon J. Applications of detection and estimation theory to large array seismology[J]. Proceedings of the IEEE, 1970,58(5):760-770.
|
[7] |
叶太兰. 微动台阵探测技术及其应用研究[J]. 中国地震, 2004,20(1):47-52.
|
[7] |
Ye T L. The exploration technique microtremor array and its application[J]. Earthquake Research, 2004,20(1):47-52.
|
[8] |
王振东. 微动的空间自相关法及其实用技术[J]. 物探与化探, 1986,10(2):123-132.
|
[8] |
Wang Z D. The micromotional spatial autocorrelation method and its practical technique[J]. Geophysical and Geochemical Exploration, 1986,10(2):123-132.
|
[9] |
冉伟彦, 王振东. 长波微动法及其新进展[J]. 物探与化探, 1994,18(1):28-34.
|
[9] |
Ran W Y, Wang Z D. The long-wave microtremors method and its advances[J]. Geophysical and Geochemical Exploration, 1994,18(1):28-34.
|
[10] |
徐佩芬, 李世豪, 杜建国, 等. 微动探测:地层分层和隐伏断裂构造探测的新方法[J]. 岩石学报, 2013,29(5):1841-1845.
|
[10] |
Xu P F, Li S H, Du J G, et al. Microtremor survey method: A new geophysical method for dividing strata and detecting the buried fault structures[J]. Acta Petrologica Sinica, 2013,29(5):1841-1845.
|
[11] |
刁天仁, 杜霏. 综合物探方法在安徽省岳西县溪沸地热勘探中的应用[J]. 工程地球物理学报, 2019,16(6):815-821.
|
[11] |
Diao T R, Du F. Application of integrated geophysical exploration method to Xifei geothermal exploration in Yuexi county of Anhui province[J]. Chinese Journal of Engineering Geophysics, 2019,16(6):815-821.
|
[12] |
曹振国. 微动观测方法在煤矿陷落柱探测中的应用[J]. 山东煤炭科技, 2010(1):89-90.
|
[12] |
Cao Z G. Application of the microtremor survey method in coal mine collapse column detection[J]. Shandong Coal Science and Technology, 2010(1):89-90.
|
[13] |
李耐宾, 裴世建. 微动技术在大连地铁岩溶勘察中的应用[J]. 工程地球物理学报, 2019,16(5):580-585.
|
[13] |
Li N B, Pei S J. Application of the microtremor technology in karst investigation of Dalian Metro[J]. Chinese Journal of Engineering Geophysics, 2019,16(5):580-585.
|
[14] |
黄光明, 赵举兴, 李长安, 等. 岩溶区地下溶洞综合物探探测试验研究——以福建省永安大湖盆地为例[J]. 地球物理学进展, 2019,34(3):1184-1191.
|
[14] |
Huang G M, Zhao J X, Li C A, et al. Detection of underground karst caves by comprehensive geophysical exploration in karst area: taking Dahu basin in Fujian province as example[J]. Progress in Geopgysics, 2019,34(3):1184-1191.
|
[15] |
查雁鸿. 城市强干扰条件下无损地质勘查的一种有效方法——微动法[J]. 城市建设理论研究(电子版), 2018(34):86.
|
[15] |
Zha Y H. An effective method of non-destructive geological survey under strong interference conditions in cities-Microtremor survey method[J]. Urban Construction Theory Research (electronic version), 2018(34):86.
|
[16] |
李雪燕, 陈晓非, 杨振涛, 等. 城市微动高阶面波在浅层勘探中的应用:以苏州河地区为例[J]. 地球物理学报, 2020,63(1):247-255.
|
[16] |
Li X Y, Chen X F, Yang Z T, et al. Application of high-order surface waves in shallow exploration:An example of the Suzhou river,Shanghai[J]. Chinese Journal Geophysics, 2020,63(1):247-255.
|
[17] |
李巧灵, 雷晓东, 李晨, 等. 微动测深法探测厚覆盖层结构——以北京城市副中心为例[J]. 地球物理学进展, 2019,34(4):1635-1643.
|
[17] |
Li Q L, Lei X D, Li C, et al. Exploring thick overburden structure by microtremor survey: A case study in the subsidiary administrative center[J]. Progress in Geophysics, 2019,34(4):1635-1643.
|
[18] |
李万伦, 田黔宁, 刘素芳, 等. 城市浅层地震勘探技术进展[J]. 物探与化探, 2018,42(4):653-661.
|
[18] |
Li W L, Tian Q N, Liu S F, et al. Progress in the study of shallow seismic exploration technology in urban Areas[J]. Geophysical and Geochemical Exploration, 2018,42(4):653-661.
|
[19] |
林朝旭. 地铁盾构区间孤石与基岩凸起等不良地质体探测新方法[J]. 工程地球物理学报, 2018,15(4):432-439.
|
[19] |
Lin C X. A new method to detect adverse geological bodies in urban metro shield construction[J]. Chinese Journal of Engineering Geophysics, 2018,15(4):432-439.
|
[20] |
徐佩芬, 侍文, 凌苏群, 等. 二维微动剖面探测“孤石”:以深圳地铁7号线为例[J]. 地球物理学报, 2012,55(6):2120-2128.
|
[20] |
Xu P F, Shi W, Ling S Q, et al. Mapping spherically weathered “boulders”using 2D microtremor profiling Method: A case study along subway line 7 in Shenzhen[J]. Chinese Journal of Geophysics, 2012,55(6):2120-2128.
|
[21] |
章飞亮, 闫高翔, 袁真秀, 等. 微动技术在地铁隧道区间孤石探测中的应用[J]. 工程地球物学报, 2015,12(6):817-822.
|
[21] |
Zhang F L, Yan G X, Yuan Z X, et al. The application of micro technology to boulders detection in Subway Tunnel[J]. Chinese Journal of Engineering Geophysics, 2015,12(6):817-822.
|
[22] |
刘宏岳, 黄佳坤, 孙智勇, 等. 微动探测方法在城市地铁盾构施工“孤石”探测中的应用——以福州地铁1号线为例[J]. 隧道建设, 2016,36(12):1500-1506.
|
[22] |
Liu H Y, Huang J K, Sun Z Y, et al. Application of microtremor method to boulders detection in Urban metro shield construction: case ctudy of fuzhou metro line No.1[J]. Tunnel Construction, 2016,36(12):1500-1506.
|
[23] |
高艳华, 黄溯航, 刘丹, 等. 微动探测技术及其工程应用进展[J]. 科学技术与工程, 2018,18(23):146-155.
|
[23] |
Gao Y H, Huang S H, Liu D, et al. Microtremor detection technology and its new progress in engineering Application[J]. Science Technology and Engineering, 2018,18(23):146-155.
|
[24] |
李井冈, 姚运生, 张丽芬, 等. 微动探测方法软件的实现[J]. 地震工程学报, 2017,39(2):376-380.
|
[24] |
Li J G, Yao Y S, Zhang L F, et al. Implementation of the microtremor survey method software[J]. China Earthquake Engineering Journal, 2017,39(2):376-380.
|
[25] |
陈建兴, 郑有强, 周会信, 等. 福州地铁F1线工程详勘报告[R]. 福建华东岩土工程有限公司, 2019.
|
[25] |
Chen J X, Zheng Y Q, Zhou H X, et al. Detailed investigation report of fuzhou metro line No.F1[R]. Fujian Huadong Geotechnical Engineering Co.,Ltd., 2019.
|
[1] |
HE Sheng, WANG Wan-Ping, DONG Gao-Feng, NAN Xiu-Jia, WEI Feng-Feng, BAI Yong-Yong. Application of the opposing-coils transient electromagnetic method in urban geological surveys[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1379-1386. |
[2] |
WANG Liang, LONG Xia, WANG Ting-Ting, XI Zhen-Zhu, CHEN Xing-Pen, ZHONG Ming-Feng, DONG Zhi-Qiang. Application of the opposing-coils transient electromagnetic method in detection of urban shallow cavities[J]. Geophysical and Geochemical Exploration, 2022, 46(5): 1289-1295. |
|
|
|
|