|
|
The parameter selection of middle and shallow seismic exploration based on vibrator |
XIE Xing-Long( ), MA Xue-Mei( ), LONG Hui, LI Qiu-Chen, GUO Shu-Jun, CHENG Zheng-Pu |
Center for Hydrogeology and Environmental Geology Survey,CGS,Baoding 071051,China |
|
|
Abstract The vibrator has been widely used in petroleum,coal field and other seismic exploration,and the corresponding technical means are relatively mature;nevertheless,there is no reference basis for the parameter selection of middle and shallow seismic exploration with vibrator.In order to study how to obtain high quality data in middle and shallow seismic exploration,the authors carried out a series of "vibrator excitation,high frequency geophone reception" experiments in Xiong'an.Based on a large number of experimental data and using qualitative analysis of original single shot and quantitative analysis of frequency spectrum,this paper systematically discusses the influence of the selection of parameters such as vibration number of vibrator,sweep length,starting frequency,ending frequency,drive level,slope length and natural frequency of geophone on data quality.This paper clarifies the key points and basis of parameter selection,puts forward the concept of high cutoff frequency,and summarizes the strategy of parameter selection for middle and shallow seismic exploration,which provides some reference for the use of vibrator in middle and shallow seismic exploration.
|
Received: 10 April 2020
Published: 20 August 2021
|
|
Corresponding Authors:
MA Xue-Mei
E-mail: xxl0306@126.com;247523354@qq.com
|
|
|
|
|
The layout of the test field
|
|
The diagram of window selection for spectrum analysis
|
|
Spectrum comparison of different vibration times
|
|
Spectrum comparison of different sweep lengths
|
|
Spectrum comparison of different drive levels
|
|
Spectrum comparison of different slope lengths
|
|
Single shot record comparison of different starting frequencies
|
|
Spectrum comparison of different starting frequencies
|
|
Spectrum comparison of different starting frequencies
|
|
Single shot record comparison of different ending frequencies
|
|
Spectrum comparison of different ending frequencies
|
|
Spectrum comparison of different ending frequencies
|
|
Single shot record comparison of different geophone
|
|
Spectrum comparison of different geophone
|
|
Single shot record comparison of different geophone at vibrator output of 30%
|
|
Seismic stack profile comparison of different geophone
|
[1] |
佟训乾, 林君, 姜弢, 等. 陆地可控震源发展综述[J]. 地球物理学进展, 2012,27(5):1912-1921.
|
[1] |
Tong X Q, Lin J, Jiang T, et al. Summary of development of land vibrator[J]. Progress in Geophysics, 2012,27(5):1912-1921.
|
[2] |
倪宇东, 王井富, 马涛, 等. 可控震源地震采集技术的进展[J]. 石油地球物理勘探, 2011,46(3):349-356.
|
[2] |
Ni Y D, Wang J F, Ma T, et al. Advances in vibroseis acquisition[J]. Oil Geophysical Prospecting, 2011,46(3):349-356.
|
[3] |
凌云, 高军, 孙德胜, 等. 可控震源在地震勘探中的应用前景与问题分析[J]. 石油物探, 2008,47(5):425-438.
|
[3] |
Ling Y, Gao J, Sun D S, et al. Analysis of vibroseis in seismic exploration and its application[J]. Geophysical Prospecting for Petroleum, 2008,47(5):425-438.
|
[4] |
周如义, 魏铁, 张新峰, 等. 可控震源高效交替扫描作业技术及应用[J]. 石油地球物理勘探, 2008,43(s2):15-18.
|
[4] |
Zhou R Y, Wei T, Zhang X F, et al. High-efficient alternative sweeping technique of vibroseis and application[J]. Oil Geophysical Prospecting, 2008,43(s2):15-18.
|
[5] |
柳兴刚, 刘志刚, 张健宸, 等. 低频可控震源在苏丹复杂探区中的应用[J]. 物探装备, 2019,29(2):71-75.
|
[5] |
Liu X G, Liu Z G, Zhang J C, et al. Application of low-frequency vibrator in complex exploration area in Sudan[J]. Equipment for Geophysical Prospecting, 2019,29(2):71-75.
|
[6] |
李桂林, 田玉昆, 尹吴海, 等. 西藏高原地区低频可控震源高密度宽线地震采集技术攻关与应用——以尼玛盆地低频可控震源采集为例[J]. 地球物理学进展, 2019,34(1):113-118.
|
[6] |
Li G L, Tian Y K, Yi W H, et al. Low-frequency vibroseis with high density wide line seismic acquisition technology research and application in Tibet Plateau:A case study of low-frequency vibroseis[J]. Progress in Geophysics, 2019,34(1):113-118.
|
[7] |
陈鹏, 于常青, 韩建光, 等. 低频可控震源在哈拉湖冻土区二维地震勘探试验研究[J]. 地球物理学进展, 2018,33(2):562-570.
|
[7] |
Chen P, Yu C Q, Han J G, et al. Low-frequency vibroseis experimental study of 2D seismic exploration for Hala lake's permafrost region[J]. Progress in Geophysics, 2018,33(2):562-570.
|
[8] |
Gibson J, Lin F, Egreteau A, et al. The case for longer sweeps in vibrator acquisition[J]. The Leading Edge, 2010,29(6):648-652.
|
[9] |
Jean-Jacques , Postel , Julien , et al. V1:Implementation and application of single-vibrator acquisition[J]. The Leading Edge, 2008,27(5):604-608.
|
[10] |
曲英铭, 李振春, 韩文功, 等. 可控震源高效采集数据特征干扰压制技术[J]. 石油物探, 2016,55(3):395-407.
|
[10] |
Qu Y M, Li Z C, Han W G, et al. The elimination technology for special interference in vibroseis efficient acquisition data[J]. Geophysical Prospecting for Petroleum, 2016,55(3):395-407.
|
[11] |
曹务祥, 孙哲, 刘丽丽. 高保真可控震源采集能量分析[J]. 石油地球物理勘探, 2011,46(4):535-537.
|
[11] |
Cao W X, Sun Z, Liu L L. Energy analysis of high fidelity vibroseis acquisition[J]. Oil Geophysical Prospecting, 2011,46(4):535-537.
|
[12] |
郭勇. 可控震源高效采集噪音特点及其压制方法研究[D]. 成都:西南石油大学, 2016.
|
[12] |
Guo Y. Study on noise characteristics and suppression methods of vibroseis efficient acquisition[D]. Chengdu:Southwest Petroleum University, 2016.
|
[13] |
薛海飞, 董守华, 陶文朋. 可控震源地震勘探中的参数选择[J]. 物探与化探, 2010,34(2):63-68.
|
[13] |
Xue H F, Dong S H, Tao W P. Parameter selection in vibroseis seismic exploration[J]. Geophysical and Geochemical Exploration, 2010,34(2):63-68.
|
[14] |
武娇阳. 浅层地震勘探在城市活断层勘查中的应用技术[D]. 成都:成都理工大学, 2012.
|
[14] |
Wu J Y. The Technology of seismic exploration in the exploration of active fault in cities[D]. Chengdu:Chengdu University of Technology, 2012.
|
[15] |
孙海川. 可控震源地震采集技术在H探区煤炭勘查中的实验[J]. 物探与化探, 2020,44(1):42-49.
|
[15] |
Sun H C. Experimental study of vibroseis seismic acquisition technology on coal exploration in H prospecting area[J]. Geophysical and Geochemical Exploration, 2020,44(1):42-49.
|
[16] |
Tsaig Y, Donoho D L. Extensions of compressed sensing[J]. Signal Processing, 2006,86(3):549-571.
|
[17] |
周大同, 周恒, 张慕刚, 等. 可控震源施工效率估算方法[J]. 石油地球物理勘探, 2008,43(s2):50-54.
|
[17] |
Zhou D T, Zhou H, Zhang M G, et al. Evaluating method of vibriseis operation efficiency[J]. Oil Geophysical Prospecting, 2008,43(s2):50-54.
|
[18] |
梁运基, 李桂林. 陆上高分辨率地震勘探检波器性能及参数选择分析[J]. 石油物探, 2005,44(6):640-644.
|
[18] |
Liang Y J, Li G L. The geophone property and preferences in land high-resolution seismic survey[J]. Geophysical Prospecting for Petroleum, 2005,44(6):640-644.
|
[19] |
吕公河. 地震勘探检波器原理和特性及有关问题分析[J]. 石油物探, 2009,48(6):531-543.
|
[19] |
Lyu G H. Analysis on principles and performance of seismic geophone and relevant issues[J]. Geophysical Prospecting for Petroleum, 2009,48(6):531-543.
|
[20] |
曹务祥. 可控震源技术使用误区分析[J]. 石油地球物理勘探, 2006,41(3):341-345.
|
[20] |
Cao W X. Analysis of aspects in mistaken use of vibroseis technique[J]. Oil Geophysical Prospecting, 2006,41(3):341-345.
|
[21] |
邹志辉, 张翊孟, 卞爱飞, 等. 常规检波器低频数据的评价与恢复及其在地震成像中的应用[J]. 石油地球物理勘探, 2016,51(5):841-849.
|
[21] |
Zou Z H, Zhang Y M, Bian A F, et al. Low-frequency evaluation and recovery of conventional geophone data and applications in seismic imaging[J]. Oil Geophysical Prospecting, 2016,51(5):841-849.
|
[22] |
Ziolkowski A, Hanssen P, Gatliff R, et al. Use of low frequencies for sub-basalt imaging[J]. Geophysical Prospecting, 2010,51(3):169-182.
|
[23] |
汪恩华, 赵邦六, 王喜双, 等. 中国石油可控震源高效地震采集技术应用与展望[J]. 中国石油勘探, 2013,18(5):24-34.
|
[23] |
Wang E H, Zhao B L, Wang X S, et al. Application and outlook of vibroseis acquisition techniques with high efficiency of CNPC[J]. China Petroleum Exploration, 2013,18(5):24-34.
|
[24] |
张丽艳, 李昂, 裴江云, 等. 低频可控震源“两宽一高”地震处理技术研究[J]. 地球物理学进展, 2018,33(4):1629-1636.
|
[24] |
Zhang L Y, Li A, Pei J Y, et al. Low frequency vibrator "Two-wide One-high" seismic processing technique research[J]. Progress in Geophysics, 2018,33(4):1629-1636.
|
[1] |
CHEN Zi-Long, WANG Hai-Yan, GUO Hua, WANG Guang-Wen, ZHAO Yu-Lian. A review of the research progress and application status of seismic full waveform inversion[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 628-637. |
[2] |
ZHANG Ru-Hua, ZHANG Dong-Jun, HUANG Jian-Ping, GOU Qi-Yong, ZHOU Jia-Ni. Frequency-domain 2D seismic forward modeling method based on the LSCG method and the wavenumber compensation[J]. Geophysical and Geochemical Exploration, 2023, 47(2): 384-390. |
|
|
|
|