|
|
Wide field electromagnetic data processing and interpretation platform based on MySQL |
ZHU Yun-Qi1,2,3, LI Di-Quan1,2,3( ), WANG Jin-Hai1,2,3,4 |
1. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University), Ministry of Education, Changsha 410083, China 2. Key Laboratory of Non-ferrous and Geological Hazard Detection, Changsha 410083, China 3. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China 4. 3rd Geological Prospecting Institute of Qinghai Province, Xining 810029, China |
|
|
Abstract Aiming at tackling the current shortcomings of wide field electromagnetic method data processing software such as low integration, cumbersome operation and inability to manage data in a unified manner, the authors developed wide field electromagnetic method data processing and interpretation software. The software adopts client-server architecture and modular design. The project management module developed based on MySQL database can realize the automatic storage and management of project data. The data processing module of wide field electromagnetic method developed by the scientific computing library based on Python can meet the data processing requirements. Based on visualization and interactive operation, this software can greatly simplify the operation process and improve the efficiency of data processing. This software was applied to actual projects and, as a result, large quantities of data were processed, and good results were achieved.
|
Received: 07 December 2020
Published: 20 August 2021
|
|
Corresponding Authors:
LI Di-Quan
E-mail: lidiquan@csu.edu.cn
|
|
|
|
|
Software architecture
|
|
The main interface of the software
|
字段 | 类型 | 说明 | id | Int | 数据Id,自增主键 | create_user | Varchar(255) | 创建者用户名 | create_time | Datetime | 创建时间 | area_id | Int | 所属工区id | line | Int | 线号 | point | Double(15,6) | 点号 | distance | Double | 点距 | ax | Decimal(15,4) | 场源A极东坐标 | ay | Decimal(15,4) | 场源A极北坐标 | bx | Decimal(15,4) | 场源B极东坐标 | by | Decimal(15,4) | 场源B极北坐标 | mx | Decimal(15,4) | M极北坐标 | my | Decimal(15,4) | M极东坐标 | nx | Decimal(15,4) | N极北坐标 | ny | Decimal(15,4) | N极东坐标 | frequency | Decimal(15,8) | 频率 | senddata | Decimal(15,6) | 发送电流 | revdata | Decimal(15,6) | 电位差 | error | Decimal(15,6) | 误差 | result | Decimal(15,6) | 视电阻率 | file_name_i | Varchar | 电流文件 | file_name_v | Varchar | 电压文件 | device_no | Varchar | 设备编号 | work_date | Varchar | 测量日期 |
|
Comprehensive table of original data
|
|
Database system
|
|
Data processing flow
|
|
Detecting device layout
|
|
Pseudo-sectional diagram of apparent resistivity
|
|
Measured data curve and forward data curve
|
|
Iterative error curve
|
|
Inversion and interpretation section
|
[1] |
王林飞, 熊盛青, 何辉, 等. 非地震地球物理软件发展现状与趋势[J]. 物探与化探, 2011,35(6):837-844.
|
[1] |
Wang L F, Xiong S Q, He H, et al. Curreent status and future trends of non-seismic geophysical software[J]. Geophysical and Geochemical Exploration, 2011,35(6):837-844.
|
[2] |
梁萌, 吴文鹂, 陈实. 电磁探测正反演软件设计与开发[J]. 物探化探计算技术, 2019,41(6):798-805.
|
[2] |
Liang M, Wu W L, Chen S. Design and development of electromagnetic prospecting forward modeling and inversion software[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2019,41(6):798-805.
|
[3] |
张必明, 蒋奇云, 王向华, 等. 广域电磁勘探数据可视化预处理软件开发[J]. 地球物理学进展, 2014,29(4):1873-1881.doi: 10.6038/pg20140453.
|
[3] |
Zhang B M, Jiang Q Y, Wang X H, et al. Development of data visualization preprocessing software for wide field electromagnetic method prospecting data[J]. Progress in Geophysics, 2014,29(4):1873-1881.doi: 10.6038/pg20140453.
|
[4] |
何继善. 广域电磁法和伪随机信号电法[M]. 北京: 高等教育出版社, 2010.
|
[4] |
He J S. Wide field electromagnetic sounding methods and pseudo-random signal coding electrical method[M]. Beijing: Higher Education Press, 2010.
|
[5] |
何继善. 广域电磁测深法研究[J]. 中南大学学报:自然科学版, 2010,41(3):1065-1072.
|
[5] |
He J S. Wide field electromagnetic sounding methods[J]. Journal of Central South University:Science and Technology, 2010,41(3):1065-1072.
|
[6] |
李帝铨, 胡艳芳. 强干扰矿区中广域电磁法与CSAMT 探测效果对比[J]. 物探与化探, 2015,39(5):967-972. http://doi.org/10.11720/wtyht.2015.5.15.
|
[6] |
Li D Q, Hu Y F. A comparison of wide field electromagnetic method with CSAMT method in strong interferential mining area[J]. Geophysical and Geochemical Exploration, 2015,39(5):967-972. http://doi.org/10.11720/wtyht.2015.5.15.
|
[7] |
詹少全, 丁梅花, 李爱勇, 等. 贵州碳酸盐岩山区广域电磁法勘探应用[J]. 物探与化探, 2020,44(1):88-92. http://doi.org/10.11720/wtyht.2020.2451.
|
[7] |
Zhan S Q, Ding M H, Li A Y, et al. The application of wide field electromagnetic sounding method to exploration in carbonatite mountain areas of Guizhou Province[J]. Geophysical and Geochemical Exploration, 2020,44(1):88-92. http://doi.org/10.11720/wtyht.2020.2451.
|
[8] |
曹彦荣, 宋涛, 韩红庆, 等. 用广域电磁法勘查深层地热资源[J]. 物探与化探, 2017,41(4):678-683. http://doi.org/10.11720/wtyht.2017.4.14.
|
[8] |
Cao Y R, Song T, Han H Q, et al. Exploration of deep geothermal energy resources with wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 2017,41(4):678-683. http://doi.org/10.11720/wtyht.2017.4.14.
|
[9] |
凌帆, 朱裕振, 周明磊, 等. 广域电磁法在南华北盆地长山隆起页岩气资源潜力评价中的应用[J]. 物探与化探, 2017,41(2):369-376. http://doi.org/10.11720/wtyht.2017.2.28.
|
[9] |
Ling F, Zhu Y Z, Zhou M L, et al. Shale gas potential assessment of Changsan uplift area in southern North China basin by using wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 2017,41(2):369-376. http://doi.org/10.11720/wtyht.2017.2.28.
|
[10] |
杨松霖, 袁博, 李帝铨. 高陡双复杂地区多种页岩气勘探方法效果对比[J]. 物探与化探. 2016,40(5):941-946. http://doi.org/10.11720/wtyht.2016.5.16.
|
[10] |
Yang S L, Yuan B, Li D Q. An analysis of some different exploration methods in complex terrain area[J]. Geophysical and Geochemical Exploration. 2016,40(5):941-946. http://doi.org/10.11720/wtyht.2016.5.16.
|
[11] |
张佩佩. 面向WinForm Control的自动化测试框架的设计与实现[D]. 西安:西安电子科技大学, 2009.
|
[11] |
Zhang P P. Design and implementation of an automated test framework oriented to WinForm Control[D]. Xi'an: Xidian University, 2009.
|
[12] |
廉龙颖, 王希斌, 赵艳芹, 等. WinForm程序设计与实践[M]. 北京: 清华大学出版社, 2019.
|
[12] |
Lian L P, Wang X B, Zhao Y Q, et al. WinForm program design and practice[M]. Beijing: Tsinghua University Press, 2019.
|
[13] |
McKinney W. Python for data analysis, second edition[M]. O’Reilly Media. Inc., 2017.
|
[14] |
Schwartz B, Zaitsev P, Tkachenko V. High performance MySql(Third Edition)[M]. O’Reilly Media. Inc., 2012.
|
[15] |
索光运, 李帝铨, 胡艳芳. 基于解析雅克比矩阵的E-Ex广域电磁法一维并行约束反演[J]. 物探化探计算技术, 2019,41(1):55-61.
|
[15] |
Suo G Y, Li D Q, Hu Y F. One-dimension parallel constrained inversion of E-Ex wide field electromagnetic method based on analytical Jacobian matrix[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2019,41(1):55-61.
|
[1] |
HU Zhi-Fang, LUO Wei-Feng, WANG Sheng-Jian, KANG Hai-Xia, ZHOU Hui, ZHANG Yun-Xiao, ZHAN Shao-Quan. Application of wide field electromagnetic method in the fracturing monitoring of well Anye-2[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 718-725. |
[2] |
ZHU Jian-Bing, GAO Zhao-Qi, TIAN Ya-Jun, LIANG Xing-Cheng. Globally optimized seismic impedance inversion with lateral constraints and its application[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1477-1484. |
|
|
|
|