Elements enrichment and dilution characteristics and deep metallogenic prognosis in the Haiyu gold deposit, Jiaodong Peninsula
ZHANG Liang-Liang1,2(), ZHU Li-Xin3, MA Sheng-Ming1(), LIN Shao-Yi2, DAI Chang-Guo2, ZHOU Ming-Ling2, HUO Guang2, XU Zhong-Hua2, XI Ming-Jie1, ZHANG Tao2
1. Institute of Geophysics and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China 2. No. 6 Institute of Geology and Mineral Resources, Weihai 264200,China 3. China Geological Survey, Beijing 100037, China
The Haiyu gold deposit, as a superlarge gold deposit with gold reserves of 470 t and average grade of 4.30×10-6, is a typical Jiaojia-type gold deposit. The authors carried out the rock geochemical survey by the samples from drillholes, and detected the enrichment of Au, Cu, Pb, Zn, Ag, As, Sb, Cd, Bi, S and Fe2O3 and the depletion of Na2O, Ba and Sr in the ore-hosting tectonic alteration zone. The authors systematically summarized the geochemical marks used for exploration. The enrichment of S and Au, or called the positive S and Au anomalies, is the typical geochemical mark of the source rock. The enrichment of S, Au, Ag and Bi and the depletion of Na2O and CaO are typical geochemical marks of the tectonic alteration zone. Based on the above elements and their anomalies, the authors constructed the ore-induced anomaly model of the Haiyu gold deposit, which provides a useful reference for the exploration of the peripheral and deep-seated gold deposits. It is proposed that the main gold orebodies of the ore-forming zone of the sea field may be along ZK2403, ZK3008, and ZK3814 boreholes spread in NEE direction.
Liang-Liang ZHANG,Li-Xin ZHU,Sheng-Ming MA, et al. Elements enrichment and dilution characteristics and deep metallogenic prognosis in the Haiyu gold deposit, Jiaodong Peninsula[J]. Geophysical and Geochemical Exploration,
2021, 45(4): 835-845.
Regional geological map of the Jiaodong Peninsula,showing distribution of gold deposits (modified from Song M C,et al[20]) 1—Quaternary; 2—Neogene,Paleogene; 3—Cretaceous; 4. Paleo-Neoproterozoic; 5—Neoproterozoic granitic gneiss containing eclogite; 6—Archean granite-greenstone belt; 7—Cretaceous Laoshan granite; 8—Cretaceous Weideshan granite; 9—Cretaceous Guojialing granodiorite; 10—Jurassic granite; 11—Triassic granite; 12—Conformity/unconformity geological boundary; 13—fault; 14—the location of the shallow gold deposits proven in the past (the diameters from large to small indicate super-large gold deposits with resource reserves ≥100 t, large-scale gold deposits with resource reserves of 20~100 t, medium-sized gold deposits with resource reserves of 5~20 t and small-scale gold deposits with reserves <5 t); 15—the location of the newly discovered deep gold deposit (the diameter has the same meaning as in legend 14); 16—altered-rock type gold deposits/quartz-vein type gold deposits/other types of gold deposits; 17—the location of north Sanshan island water gold deposit
Microscopic characteristics of altered rocks and gold deposits in Haiyu gold deposit a—potassium, the picture shows potassium feldspar wrapped plagioclase; b—sericification of the hanging wall of the fault, it can be seen that the sericite surface alteration metasomatizes potassium feldspar and plagioclase, and the silicification is embodied as wavy matte quartz; c—pyrite-sericite-quartzized cataclastic rock, where plagioclase and potash feldspar are all corroded into sericite and quartz, and gold-bearing pyrites are distributed in veins; d—scattered pyrite in pyrite-sericite-quartzized cataclastic rocks; e—gold minerals are distributed in pyrite in the form of brecciated inclusion gold and linear interstitial gold; f—gold minerals are encased in pyrite in an oval shape;Kf—potash feldsparl;Pl—plagioclase;Qz—quartz;Ser—sericite;Py—pyrite;Au—gold mineral
指标
测试方法
检出限
单位
一级标准物质合格率/%
重复样合格率/%
Au
无火焰原子吸收光谱法(AAN) 火焰原子吸收光谱法(AAS)
0.2 100
10-9
100
95.6
Ag
等离子体质谱法(ICP-MS)
20
10-9
100
97.9
As
氢化物—原子荧光光谱法(HG-AFS)
1
10-6
100
94.7
Ba
压片法—X射线荧光光谱法(XRF)
5
10-6
100
100
Bi
等离子体质谱法(ICP-MS)
0.05
10-6
100
97.9
Cd
等离子体质谱法(ICP-MS)
20
10-9
100
100
Cr
等离子体光谱法(ICP-AES)
2
10-6
100
97.9
Cu
等离子体质谱法(ICP-MS)
1
10-6
100
98.9
Ga
等离子体质谱法(ICP-MS)
2
10-6
100
100
Ge
氢化物—原子荧光光谱法(HG-AFS)
0.1
10-6
100
100
Mo
等离子体质谱法(ICP-MS)
0.2
10-6
100
95.7
Pb
等离子体质谱法(ICP-MS)
2
10-6
100
92.6
S
压片法—X射线荧光光谱法(XRF)
50
10-6
100
100
Sb
等离子体质谱法(ICP-MS)
0.05
10-6
100
96.8
Sr
压片法—X射线荧光光谱法(XRF)
5
10-6
100
100
Ti
压片法—X射线荧光光谱法(XRF)
10
10-6
100
100
W
等离子体质谱法(ICP-MS)
0.2
10-6
100
98.9
Zn
等离子体质谱法(ICP-MS)
2
10-6
100
96.8
Zr
压片法—X射线荧光光谱法(XRF)
2
10-6
100
100
SiO2
压片法—X射线荧光光谱法(XRF)
0.1
%
100
100
Al2O3
等离子体光谱法(ICP-AES)
0.1
%
100
98.9
TFe2O3
压片法—X射线荧光光谱法(XRF)
0.1
%
100
98.9
MgO
压片法—X射线荧光光谱法(XRF)
0.05
%
100
100
CaO
等离子体光谱法(ICP-AES)
0.05
%
100
100
Na2O
等离子体光谱法(ICP-AES)
0.05
%
100
98.9
K2O
等离子体光谱法(ICP-AES)
0.05
%
100
100
Sample test method and the result statistics of quality monitoring
指标
变辉长岩 (n=61)
二长花岗岩 (n=316)
上盘花岗岩 (n=105)
构造蚀变带 (n=160)
下盘花岗岩 (n=102)
花岗闪长岩 (n=21)
C
q
C
q
C
q
C
q
C
q
C
q
Au
4.0
4.7
23
46
21
42
3037
6074
166
333
7.0
10
Ag
210
3.1
390
6.5
840
14
3900
65
1300
21
87
1.4
As
8.5
5.7
8.0
6.7
17
14
69
58
26
21
1.0
0.8
Cd
280
2.5
710
12.5
1500
27
690
12
1000
18
48
0.6
Cu
46
0.8
9.12
1.7
14
2.5
87
16
32
5.8
4.3
0.2
Ga
21
1.1
21.43
1.2
20
1.1
20
1.1
21
1.1
20
1.1
Ge
1.31
1.2
1.2
1.0
1.2
0.96
1.4
1.1
1.1
0.9
0.78
0.7
Pb
26
1.7
83
3.2
533
20
473
18
435
16.7
22
1.4
Sb
0.55
3.4
0.48
3.7
0.75
5.8
0.88
6.7
0.73
5.6
0.24
1.7
Zn
109
1.0
156
3.9
353
8.8
177
4.4
291
7.3
24
0.4
Cr
111
0.5
24
3.6
24
3.6
43
6.4
18
2.7
8.8
0.2
Ti
3178
0.4
774
0.6
838
0.61
1047
0.8
840
0.6
915
0.3
Ba
776
1.7
1098
1.6
1154
1.70
478
0.7
1081
1.6
1640
1.8
Sr
363
0.6
376
1.7
332
1.51
113
0.5
293
1.3
659
1.5
Zr
91
0.8
60
0.4
69
0.44
84
0.5
75
0.5
75
0.4
Mo
4.60
10
2.0
2.8
0.96
1.37
1.2
1.6
1.0
1.4
0.72
1.5
W
1.24
2.5
1.2
1.2
1.4
1.42
4
4.3
2.3
2.3
0.85
2.2
Bi
0.15
1.6
0.29
1.2
0.12
0.49
8.2
34
0.73
3.0
0.06
0.5
S
701
1.4
382
4.2
632
7.0
6573
73
2727
30
53
0.2
SiO2
58.49
1.20
65.15
0.90
63.86
0.88
59.80
0.83
69.95
0.97
64.31
0.98
Al2O3
14.49
0.89
13.89
1.00
13.83
1.00
13.08
0.95
15.11
1.09
14.40
0.95
TFe2O3
6.16
0.64
1.34
0.59
1.78
0.78
4.76
2.08
2.58
1.13
0.71
0.15
CaO
2.64
0.27
1.73
1.29
1.83
1.36
1.22
0.91
1.90
1.42
1.88
0.59
MgO
2.40
0.31
0.58
0.90
0.52
0.81
0.76
1.19
0.21
0.33
0.26
0.13
Na2O
2.78
1.11
3.44
0.97
2.49
0.70
0.41
0.12
3.53
1.00
4.54
1.23
K2O
3.13
3.23
4.05
0.93
4.31
0.99
4.31
0.99
4.40
1.01
3.38
1.16
Statistical table of element content and enrichment coefficient in different geological units of Haiyu gold deposit
Borehole rock survey anomaly diagram of the Haiyu gold deposit
Ore-induced anomaly pattern diagram of the Haiyu gold deposit
Prospective ore-forming location of of Haiyu gold deposit
Song M C. The main achievements and key theory and methods of deep-seated prospecting in the Jiaodong gold concentration area,Shandong Province[J]. Geological Bulletin of China, 2015,34(9):1758-1771.
[2]
Li J W, Vasconcelos P M, Zhang J, et al. 40Ar/39Ar constraints on a temporal link between gold mineralization, magmatism, and continental margin transtension in the Jiaodong gold Province, eastern China [J]. Journal of Geology, 2003,111:741-751.
[3]
Li J W, Vasconcelos P, Zhou M F, et al. Geochronology of the Pengjiakuang and Rushan Gold deposits, eastern Jiaodong gold Province, northeastern China: Implications for regional mineralization and geodynamic setting[J]. Economic Geology, 2006,101:1023-1038.
[4]
Mao J W, Wang Y T, Li H M, et al. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: Evidence from D-O-C-S isotope systematics[J]. Ore Geology Reviews, 2008,33(3):361-381.
Qian J P, Chen H Y, Sun T, et al. Study on geology and element geochemistry of Qiansunjia gold mine in Zhaoyuan,Shandong,eastern China[J]. Geochimica, 2010,39(3):213-228.
[6]
翟裕生, 姚书振, 蔡克勤 .矿床学( 第三版)[M]. 北京: 地质出版社, 2011.
[6]
Zhai Y S, Yao S Z, Cai K Q. Mineral deposits(third edition)[M]. Beijing: Geological Publishing House, 2011.
[7]
Zhai M G, Santosh M. Metallogeny of the North China Craton: Link with secular changes in the evolving Earth[J]. Gondwana Research, 2013,24(1):275-297.
[8]
Goldfarb R J, Santosh M. The dilemma of the Jiaodong gold deposits: Are they unique?[J]. Geoscience Frontiers, 2014,5(2):139-153.
Mao J W, Li H M, Wang Y T, et al. The relationship between mantle-derived fluid and gold ore-formation in the eastern Shandong peninsula: Evidences from D-O-C-S isotopes[J]. Acta Geologica Sinica, 2005,79(6):839-857.
Zhai M G, Fan H R, Yang J H, et al. Large-scale cluster of gold deposits in east shandong:anorogenic metallogenesis[J]. Earth Science Frontiers, 2004,11(1):85-98.
[12]
Kerrich R, Goldfarb R, Groves D, et al. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces[J]. Science in China, 2000,43(s1):1-68.
Ma S M, Zhu L X, Liu C M, et al. A study of the enrichment and depletion regularity of trace elements in porphyry Cu (Mo) deposits[J]. Acta Geoscientica Sinica, 2009,30(6):821-830.
Liang S Y, Ma S M, Zhu L X, et al. Geochemical anomaly structure of the Wunugetushan porphyry copper and molybdenum deposit[J]. Geophysical and Geochemical Exploration, 2010,34(2):127-133.
Sun Y, Ma S M, Liu X F, et al. A study of the structure of geochemical anomaly and prediction of deep ore body in Dalingkou Ag-Pb-Zn deposit,Zhejiang province[J]. Mineral Exploration, 2011,2(3):272-278.
Ma S M, Zhu L X, Han F F, et al. Geochemical marks of the ore-controlling tectonic alteration zone in the Jiaojia-type gold deposit, Northwestern Jiaodong Peninsula[J]. Geoscience Frontiers, 2017,24(2):64-72.
Ma S M, Zhu L X, Liu H L, et al. A study of geochemical anomaly structure of the Huitongshan copper deposit in Beishan area, Gansu Province[J]. Acta Geoscientica Sinica, 2011,32(4):405-412.
Song M C, Cui S X, Yi P H, et al. Prospecting and metallogenic model of deep large-ultra-large gold deposits in Jiaodong Northwest gold deposit concentration area, Shandong Province [M]. Beijing: Geological Publishing House, 2010.
Zhang J J, Ding Z J, Liu D H, et al. Exploration practice and prospecting results of super-large gold mine of Sanshandao northern sea area in Laizhou City,Shandong Province[J]. Gold Science and Technology, 2016,24(1):1-10.
Song M C. Discovery and tectonic-magmatic background of superlarge gold deposit in offshore of northern Sanshandao,Shandong Peninsula,China[J]. Acta Geologica Sinica, 2015,89(2):365-383.
Zhang L L, Ma S M, Zhu L X, et al. Non-mirrored symmetrical feature of altered rocks in the fault zone of Jiaojia, Jiaodong peninsula and its geological significance[J]. Geotectonica et Metallogenia, 2020,44(2):276-288.
Liu C, Deng J F, Li S R, et al. Discussions on crust-mantle structure during the formation of Yanshanian of large-super large scale deposits in the Jiaodong gold ore district: Constraints from ore-forming igneous assemblage[J]. Earth Science Frontiers, 2018,25(6):296-307.
Ma S M, Zhu L X, Zhang L L, et al. Thoughts on the geochemical mechanism of gold mineralization in the northwest Jiaodong gold province[J]. Geophysical and Geochemical Exploration, 2019,43(5):925-931.