|
|
Change in soil carbon pool in Songliao Plain and its cause analysis |
LIU Guo-Dong1,2( ), LI Lu-Jun3, DAI Hui-Min1,2, XU Jiang1,2, LIU Kai1,2, ZHANG Yi-He1,2, YANG Ze1,2( ) |
1. Shenyang Center, China Geological Survey, Shenyang 110034, China 2. Key Laboratory for Evolution and Ecological Effect in Black Land, China Geological Survey, Shenyang 110034, China 3. National Field Observation and Research Station of Hailun Agroecosystems, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China |
|
|
Abstract Based on the data of the multi-purpose regional geochemical survey in the Songliao Plain, Northeast China,the authors calculated the soil organic carbon density and reservesin surface soil(0~20 cm) and compared them with the soil organic carbon density obtained during the second national soil survey. Then it analyzed the main influencing factors of the distribution and changes of the soil organic carbon density in the plain. The results are as follows. The surface soil of different soil types in the Songliao Plain significantly differ in the proportion of organic and inorganic carbon. Specifically, the organic carbon in swamp soil, dark brown soil, peat soil, albic soil, paddy soil, and black soil accounts for 90% of the total carbon in soils, while that in chestnut soil, fluvo-aquic soil, aeolian sandy soil, and cinnamon soil accounts for less than 80% of the total carbon content. The organic carbon reserves in the surface soil in the study area is about 1,448 Tg at present. It has suffered a loss of about 115.94 Tg since the 1980s, decreasing by 7.4%. About 104.88 Tg (90.5%) of the lost carbon reserves has entered into the atmosphere. In terms of different land use types,the carbon reserves in arid land decreased by 76.12 Tg, which contributed the most CO2 to the atmosphere, followed by the carbon reservesin saline land and grassland, which decreased by 16.32 Tg and 15.93 Tg, respectively. It is considered in this study that the main reason for the decrease in soil carbon pool is the temperature rise in the Songliao Plain in the past 30 years. In detail, the reduction in soil organic carbon pool in arid land and grassland induced by the temperature rise accounted for 70% of the total loss of soil organic carbon pool, while the reduction in organic carbon caused by other factors such as agricultural production, change in land use, and soil erosion accounted for only about 30% of the total organic carbon loss.
|
Received: 25 January 2021
Published: 15 December 2021
|
|
Corresponding Authors:
YANG Ze
E-mail: liuguodong@mail.cgs.gov.cn;61421078@qq.com
|
|
|
|
|
Soil types map of the study area
|
|
Current situation of land use in the study area(2010)
|
用地类型 | 面积/km2 | 比例/% | 旱地 | 184164 | 50.08 | 林地 | 58654 | 15.95 | 草地 | 30241 | 8.22 | 水田 | 25619 | 6.97 | 建设用地 | 22096 | 6.01 | 沼泽地 | 17130 | 4.66 | 盐碱地 | 13970 | 3.80 | 河流水面 | 7830 | 2.13 | 未利用地 | 5639 | 1.53 | 沙地 | 2432 | 0.66 |
|
Statistical table of land use types in the study area
|
|
Contents of soil organic carbon and inorganic carbon in surface layer (0~20 cm) of different soil types in Songliao Plain
|
|
Distribution of soil organic carbon density in surface layer (0~20 cm) of Songliao Plain
|
土壤类型 | SOCD20/(kg·m-2) | SOCD180/(kg·m-2) | 面积/km2 | SOCS20/Tg | SOCS180/Tg | 沼泽土 | 9.24 | 41.64 | 9484 | 87.61 | 394.89 | 火山灰土 | 9.10 | 46.38 | 348 | 3.17 | 16.14 | 暗棕壤 | 7.36 | 36.86 | 32124 | 236.54 | 1184.08 | 石质土 | 6.93 | 34.93 | 48 | 0.33 | 1.68 | 泥炭土 | 6.59 | 32.30 | 424 | 2.80 | 13.70 | 城区 | 5.81 | 29.03 | 104 | 0.60 | 3.02 | 黑土 | 5.22 | 26.09 | 45868 | 239.36 | 1196.89 | 白浆土 | 4.65 | 23.12 | 10548 | 49.01 | 243.91 | 草甸土 | 4.09 | 20.23 | 105668 | 432.61 | 2137.16 | 水稻土 | 3.88 | 21.22 | 10988 | 42.64 | 233.19 | 棕壤 | 2.99 | 18.93 | 30692 | 91.92 | 581.11 | 黑钙土 | 2.99 | 14.64 | 45200 | 135.06 | 661.67 | 新积土 | 2.92 | 14.79 | 824 | 2.40 | 12.19 | 沙洲 | 2.86 | 19.58 | 4 | 0.01 | 0.08 | 江河湖泊 | 2.83 | 15.10 | 1648 | 4.67 | 24.89 | 滨海盐土 | 2.30 | 15.72 | 784 | 1.80 | 12.32 | 粗骨土 | 2.17 | 13.48 | 984 | 2.13 | 13.26 | 红黏土 | 2.14 | 15.44 | 164 | 0.35 | 2.53 | 盐土 | 1.99 | 10.78 | 856 | 1.70 | 9.22 | 碱土 | 1.99 | 10.52 | 4104 | 8.17 | 43.18 | 栗钙土 | 1.78 | 9.43 | 10248 | 18.22 | 96.66 | 褐土 | 1.77 | 10.92 | 9748 | 17.28 | 106.42 | 潮土 | 1.71 | 9.53 | 21520 | 36.84 | 205.15 | 风沙土 | 1.50 | 8.52 | 21884 | 32.73 | 186.36 | 总计 | | | 364264 | 1447.97 | 7379.70 |
|
Statistics of soil organic carbon density and carbon storage of different soil types in Songliao Plain
|
|
Changes of soil organic carbon density in surface layer (0~20 cm) of Songliao Plain
|
土地利类型 | 面积/km2 | SOCD/(kg·m-2) | 目前总量/Tg | ΔSOCD/(kg·m-2) | 总变化量/Tg | 草地 | 29964 | 3.24 | 96.95 | -0.53 | -15.93 | 旱地 | 184640 | 3.68 | 678.80 | -0.41 | -76.12 | 河流水面 | 5688 | 2.89 | 16.46 | -1.15 | -6.55 | 建设用地 | 21444 | 3.40 | 72.88 | -0.39 | -8.44 | 林地 | 59420 | 5.53 | 328.63 | 0.06 | 3.32 | 沙地 | 2400 | 0.74 | 1.78 | -0.57 | -1.36 | 水田 | 24988.00 | 4.21 | 105.23 | -0.12 | -3.12 | 滩涂 | 5392 | 3.52 | 18.99 | -0.59 | -3.17 | 未利用地 | 156 | 5.52 | 0.86 | -0.70 | -0.11 | 盐碱地 | 13832 | 1.93 | 26.70 | -1.18 | -16.32 | 沼泽地 | 16340 | 6.16 | 100.70 | 0.72 | 11.84 | 合计 | 364264 | 3.71 | 1447.97 | -0.44 | -115.94 |
|
Changes of soil organic carbon density and carbon pool in surface layer (0~20 cm) under different land use types
|
|
Soil organic carbon density statistics of land use unchanged
|
|
Comparison of surface soil(0~20 cm) organic carbon density changes without land use change in the past 30 years
|
土地利用变化 | ΔSOCD20/(kg·m-2) | 开垦0~15年 (1995~2010年) | 开垦15~30年 (1980~1995年) | 林地→旱地 | 0.71 | -0.49 | 沼泽地→旱地 | 1.52 | 0.47 | 沼泽地→水田 | 1.61 | 0.31 | 草地→旱地 | -0.42 | -0.22 | 旱地→水田 | -0.27 | 0.02 |
|
Soil carbon density changes(0~20 cm)after land-use change over the past 30 years
|
参数 | 草地 | 旱地 | 河流水面 | 建设用地 | 林地 | 沙地 | 水田 | 滩涂 | 未利用土地 | 盐碱地 | 沼泽地 | MAT | -0.580** | -0.560** | -0.176** | -0.355** | -0.531** | -0.301** | -0.441** | -0.475** | -0.549** | -0.292** | -0.503** | 样本数 | 7495 | 46197 | 1444 | 5393 | 14882 | 600 | 6260 | 1357 | 39 | 3458 | 4124 |
|
Correlation between annual average temperature MAT and soil organic carbon density
|
土地利用类型 | 面积/km2 | 目前总量/Tg | 总变化量/Tg | 温度升高的影响/Tg | 草地 | 29964 | 96.95 | -15.93 | -11.15 | 旱地 | 184640 | 678.8 | -76.12 | -51.8 | 河流水面 | 5688 | 16.46 | -6.55 | -0.99 | 建设用地 | 21444 | 72.88 | -8.44 | -2.85 | 林地 | 59420 | 328.63 | 3.32 | -21.42 | 沙地 | 2400 | 1.78 | -1.36 | -0.76 | 水田 | 24988 | 105.23 | -3.12 | -5.85 | 滩涂 | 5392 | 18.99 | -3.17 | -1.26 | 未利用地 | 156 | 0.86 | -0.11 | -0.06 | 盐碱地 | 13832 | 26.7 | -16.32 | -3.97 | 沼泽地 | 16340 | 100.7 | 11.84 | -7.41 | 合计 | 364264 | 1447.97 | -115.94 | -107.52 |
|
Surface soil carbon pool as affected by temperature rise in Songliao Plain
|
[1] |
方华军, 杨学明, 张晓平. 东北黑土有机碳储量及其对大气CO2的贡献[J]. 水土保持学报, 2003, 17(3):9-12.
|
[1] |
Fang H J, Yang X M, Zhang X P. Organic carbon stock of black soils in northeast China and it’s contribution to atmospheric CO2[J]. Journal of Soil and Water Conservation, 2003, 17(3):9-12.
|
[2] |
丁雪丽, 韩晓增, 乔云发, 等. 农田土壤有机碳固存的主要影响因子及其稳定机制[J]. 土壤通报, 2012, 43(3):737-744.
|
[2] |
Ding X L, Han X Z, Qiao Y F, et al. Sequestration of organic carbon in cultivated soils: Main factors and their stabilization mechanisms[J]. Chinese Journal of Soil Science, 2012, 43(3):737-744.
|
[3] |
Lal R, Follett R F, Stewart B A, et al. Soil carbon sequestration to mitigate climate change and advance food security[J]. Soil Science, 2007, 172(12):943-956.
|
[4] |
Gulde S, Chung H, Amelung W, et al. Soil carbon saturation controls labile and stable carbon pool dynamics[J]. Soil Science Society of America Journal, 2008, 72(3):605-612.
|
[5] |
Schlesinger W H. Evidence from chronosequence studies for a low carbon-storage potential of soils[J]. Nature, 1990, 348(6298):232-234.
|
[6] |
张丽敏, 何腾兵, 徐明岗, 等. 保护性耕作下南方旱地土壤碳氮储量变化[J]. 土壤与作物, 2013, 2(3):112-116.
|
[6] |
Zhang L M, He T B, Xu M G, et al. Soil organic carbon and nitrogen stocks under conservation tillage in upland Southern China[J]. Soil and Crop, 2013, 2(3):112-116.
|
[7] |
Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones[J]. Nature, 1982, 298(5870):156-159.
|
[8] |
苏永中, 赵哈林. 土壤有机碳储量、影响因素及其环境效应的研究进展[J]. 中国沙漠, 2002, 22(3):220-228.
|
[8] |
Su Y Z, Zhao H L. Advances in researches on soil organic carbon storages, affecting factors and its environmental effects[J]. Journal of Desert Research, 2002, 22(3):220-228.
|
[9] |
Oostv K, Quine T A, Govers G, et al. The impact of agricultural soil erosion on the global carbon cycle[J]. Science, 2007, 318(5850):626-629.
|
[10] |
Melillo J M, Steudler P A, Aber J D, et al. Soil warming and carbon-cycle feedbacks to the climate system[J]. Science, 2002, 298(5601):2173-2176.
|
[11] |
Austin A, Vivanco L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation[J]. Nature, 2006, 442(7102):555-558.
|
[12] |
Ito A, Oikawa T. A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): A description based on dry-matter production theory and plot-scale validation[J]. Ecological Modelling, 2002, 151(2-3):143-176.
|
[13] |
Piao S, Fang J, Ciais P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature: International Weekly Journal of Science, 2009, 458(9):1009-1013.
|
[14] |
Miehle P, Livesley S J, Feikema P M, et al. Assessing productivity and carbon sequestration capacity of Eucalyptus globulus plantations using the process model Forest-DNDC: Calibration and validation[J]. Ecological Modelling, 2006, 192(1-2):83-94.
|
[15] |
Rhee J S, Iamchaturapatr J. Carbon capture and sequestration by a treatment wetland[J]. Ecological Engineering, 2009, 35(3):393-401.
|
[16] |
Song G, Li L, Zhang P Q. Topsoil organic carbon storage of China and its loss by cultivation[J]. Biogeochemistry, 2005, 74(1):47-62.
|
[17] |
Janssens I A, Freibauer A, Schlamadinger B, et al. The carbon budget of terrestrial ecosystems at country-scale: A European case study[J]. Biogeosciences, 2005, 2(1):15-26.
|
[18] |
Marland G, Garten C T, Post W M, et al. Studies on enhancing carbon sequestration in soils[J]. Energy, 2004, 29(9-10):1643-1650.
|
[19] |
Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to global warming[J]. Nature, 1991, 351(6324):304-306.
|
[20] |
杨忠芳, 夏学齐, 余涛, 等. 内蒙古中北部土壤碳库构成及其影响因素[J]. 地学前缘, 2011, 18(6):1-10.
|
[20] |
Yang Z F, Xia X Q, Yu T, et al. Soil carbon pool in the northeast Inner Mongolia and its influencing factors[J]. Earth Science Frontiers, 2011, 18(6):1-10.
|
[21] |
郭晶晶, 夏学齐, 杨忠芳, 等. 长江流域典型区域土壤碳库变化及其影响因素[J]. 地学前缘, 2015, 22(6):241-250.
|
[21] |
Guo J J, Xia X Q, Yang Z F, et al. Changes of soil carbon pool in typical areas of Changjiang drainage basin and its influencing factors[J]. Earth Science Frontiers, 2015, 22(6):241-250.
|
[22] |
刘志娟, 杨晓光, 王文峰, 等. 气候变化背景下我国东北三省农业气候资源变化特征[J]. 应用生态学报, 2009, 20(9):2199-2206.
|
[22] |
Liu Z J, Yang X G, Wang W F, et al. Characteristics of agricultural climate resources in three provinces of Northeast China under global climate change[J]. Chinese Journal of Applied Ecology, 2009, 20(9):2199-2206.
|
[23] |
范昊明, 蔡强国, 王红闪. 中国东北黑土区土壤侵蚀环境[J]. 水土保持学报, 2004, 18(2):66-70.
|
[23] |
Fan H M, Cai G Q, Wang H S. Condition of soil erosion in phaeozem region of Northeast China[J]. Journal of Soil and Water Conservation, 2004, 18(2):66-70.
|
[24] |
李晓燕, 赵广敏, 李宝毅. 我国东北地区土地资源变化态势分析[J]. 水土保持研究, 2010, 17(5):68-74.
|
[24] |
Li X Y, Zhao G M, Li B Y. Analysis of changing situation of land resources in Northeast China[J]. Research of Soil and Water Conservation, 2010, 17(5):68-74.
|
[25] |
黑龙江省土地管理局, 黑龙江省土壤普查办公室. 黑龙江土壤[M]. 北京: 农业出版社, 1994:124-126.
|
[25] |
Heilongjiang Land Management Bureau, Soil Survey Office of Heilongjiang Province. Heilongjiang soil [M]. Beijing: Agriculture Press, 1994:124-126.
|
[26] |
中华人民共和国国土资源部. DD2005-01 多目标区域地球化学调查规范(1∶250 000)[S]. 北京: 中国标准出版社, 2015,3-21.
|
[26] |
Ministry of Land and Resources, PRC. DD2005-01 Specification of multi-purpose regional geochemical survey (1∶250 000) [S]. Beijing: Standards Press of China, 2015, 3-21.
|
[27] |
奚小环, 杨忠芳, 夏学齐, 等. 基于多目标区域地球化学调查的中国土壤碳储量计算方法研究[J]. 地学前缘, 2009, 16(1):194-205.
|
[27] |
Xi X H, Yang Z F, Xia X Q, et al. Calculation techniques for soil carbon storage of China based on multi-purpose geochemical survey[J]. Earth Science Frontiers, 2009, 16(1):194-205.
|
[28] |
潘根兴, 李恋卿, 张旭辉, 等. 中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J]. 地球科学进展, 2003, 18(4):609-618.
|
[28] |
Pan G X, Li L Q, Zhang X H, et al. Soil organic carbon storage of china and the sequestration dynamics in agricultural lands[J]. Advance in Earth Sciences, 2003, 18(4):609-618.
|
[29] |
王立刚, 邱建军, 马永良, 等. 应用DNDC模型分析施肥与翻耕方式对土壤有机碳含量的长期影响[J]. 中国农业大学学报, 2004, 9(6):15-19.
|
[29] |
Wang L G, Qiu J J, Ma Y L, et al. Apply DNDC model to analysis long-term effect of soil organic carbon content under different fertilization and plough mode[J]. Journal of China Agricultural University, 2004, 9(6):15-19.
|
[30] |
朱咏莉, 韩建刚, 吴金水. 农业管理措施对土壤有机碳动态变化的影响[J]. 土壤通报, 2004, 35(5):648-651.
|
[30] |
Zhu Y L, Han J G, Wu J S. Effect of agricultural practices on soil organic carbon dynamics[J]. Chinese Journal of Soil Science, 2004, 35(5):648-651.
|
[31] |
李德文, 孟凡祥, 史奕, 等. 农业管理措施对土壤有机碳固存潜力影响的研究进展[J]. 农业系统科学与综合研究, 2005, 21(4):22-25.
|
[31] |
Li D W, Meng F X, Shi Y, et al. Research advances in the effect of agricultural management on soil organic carbon sequestration[J]. System Sciences and Comprehensive Studies in Agriculture, 2005, 21(4):22-25.
|
[32] |
任国玉, 郭军, 徐铭志, 等. 近50年中国地面气候变化基本特征[J]. 气象学报, 2005, 63(6):942-956.
|
[32] |
Ren G Y, Guo J, Xu M Z, et al. Climate changes of China’s mainland over the past half century[J]. Acta Meteorologica Sinica, 2005, 63(6):942-956.
|
[33] |
Xia X, Yang Z, Liao Y, et al. Temporal variation of soil carbon stock and its controlling factors over the last two decades on the southern Song-nen Plain, Heilongjiang Province[J]. Geoscience Frontiers, 2010, 1(1):125-132.
|
[34] |
Jong E D, Kachanoski R G. The importance of erosion in the carbon balanceofprairie soils[J]. Canadian Journal of Soil Science, 1988, 68(1):111-119.
|
[35] |
刘嘉麒, 李泽椿, 秦小光. 东北地区有关水土资源配置、生态与环境保护和可持续发展的若干战略问题研究(自然历史卷)[M]. 北京: 科学出版社, 2007,500-502.
|
[35] |
Liu J Q, Li Z C, Qin X G. Study on some strategic issues related to allocation of soil and water resources, ecological and environmental protection and sustainable development in northeast China (natural history volume) [M]. Beijing: Science Press, 2007, 500-502.
|
[1] |
XUE Dong-Xu, LIU Cheng, GUO Fa, WANG Jun, XU Duo-Xun, YANG Sheng-Fei, ZHANG Pei. Predicting the geothermal resources of the Tangyu geothermal field in Meixian County, Shaanxi Province, based on soil radon measurement and the controlled source audio magnetotelluric method[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1169-1178. |
[2] |
QUE Ze-Sheng, LI Guan-Chao, HU Ying, JIAN Rui-Min, LIU Bing. GIS-based assessment of the radioactivity levels and risks of soil environment[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1336-1347. |
|
|
|
|