|
|
Research on localization of platform-based airborne gravity exploration system |
LUO Feng1,2( ), ZHOU Xi-Hua1,2, HU Ping-Hua3, JIANG Zuo-Xi1,2, WANG Guan-Xin1,2, QU Jin-Hong1,2, LI Xing-Su1,2, LI Zhao-Liang1,2, ZHAO Ming3 |
1. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, Ministry of Natural Resources, Beijing 100083, China 2. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China 3. Beijing Institute of Automatic Control Equipment, Beijing 100074, China |
|
|
Abstract To meet the accuracy requirements of airborne gravity surveys for deep resource exploration, an airborne gravity survey platform has been developed and integrated based on previous research. The platform system is an airborne gravimeter platform consisting of a three-axis stabilized platform and a quartz flexible pendulum accelerometer. It adopts self-calibration technology and the real-time error estimation and correction technology of platform attitude. Meanwhile, it is equipped with a navigation and positioning system, a vibration reduction system, an unattended system, and data processing software. Flying survey data show that the internal coincidence accuracy of the repeated-line flight data of the airborne gravity survey platform is less than 0.6×10-5 m/s2(100 s), reaching the international advanced level. Therefore, this platform allows the technology and equipment of airborne gravity surveys to be localized.
|
Received: 13 January 2021
Published: 15 December 2021
|
|
|
|
|
|
Composition diagram of platform-based airborne gravity exploration system
|
|
Composition block diagram of platform-based airborne gravity
|
|
Flow chart of self calibration algorithm
|
|
Block diagram of kalman filter
|
|
Data processing software interface of platform-based airborne gravimetry
|
|
Flow chart of platform-based airborne gravity data processing
|
|
Realization of zero phase filter
|
|
Example of zero phase filter
|
|
Comparison of repeated measurement of airborne space gravity anomaly along East—West repeated line(FIR low pass filter (100 s))
|
|
Comparison of repeated measurement of airborne space gravity anomaly along North—South repeated line(FIR low pass filter (100 s))
|
|
Comparison of repeated measurement of GT North—South airborne space gravity anomaly
|
|
Intersection statistics of original space gravity anomaly of platform-based airborne gravity exploration system
|
|
Intersection statistics of original space gravity anomaly of GT gravity exploration system
|
|
Original space gravity anomaly map of platform-based airborne gravity exploration system
|
|
Original space gravity anomaly map of GT exploration system
|
[1] |
熊盛青, 周锡华, 郭志宏, 等. 航空重力勘探理论方法与应用[M]. 北京: 地质出版社, 2010.
|
[1] |
Xiong S Q, Zhou X H, Guo Z H, et al. Theory, method and application of aerial gravity exploration [M]. Beijing: Geological Publishing House, 2010.
|
[2] |
熊盛青. 我国航空重磁勘探技术现状与发展趋势[J]. 地球物理学进展, 2009, 24(1):113-117.
|
[2] |
Xiong S Q. The present situation and development of airborne gravity and magnetic survey techniques in China[J]. Progress in Geophysics, 2009, 24(1):113-117.
|
[3] |
孙中苗. 航空重力测量理论、方法及应用研究[D]. 郑州:中国人民解放军信息工程大学, 2004.
|
[3] |
Sun Z M. Theory, method and application of aerogravimetry[D]. Zhengzhou: Information Engineering University of the Chinese People’s Liberation Army, 2004.
|
[4] |
宁津生, 黄谟涛, 欧阳永忠, 等. 海空重力测量技术进展[J]. 海洋测绘, 2014, 34(3):67-72.
|
[4] |
Ning J S, Huang M T, Ouyang Y Z, et al. Progress of sea air gravimetry technology[J]. Hydrographic Surveying and Charting, 2014, 34(3):67-72.
|
[5] |
Forsberg R, Olesen A V, Einarsson I. Airborne gravimetry for geoid determination with Lacoste Romberg and Chekan gravimeters[J]. Gyroscopy and Navigation, 2015, 6(4):265-270.
|
[6] |
Olson D. GT-1A and GT-2A airborne gravimeters: Improvements in design, operation, and processing from 2003 to 2010[C]// ASEG Conference Sydney, Australia, 2010.
|
[7] |
胡平华, 赵明, 黄鹤, 等. 航空/海洋重力测量仪器发展综述[J]. 导航定位与授时, 2017, 7(7):10-18.
|
[7] |
Hu P H, Zhao M, Huang H, et al. Overview of the development of aeronautical/oceanic gravimetric instruments[J]. Navigation, Positioning and Timing, 2017, 7(7):10-18.
|
[8] |
罗锋, 王冠鑫, 周锡华, 等. 三轴稳定平台式航空重力测量数据处理方法研究与实现[J]. 物探与化探, 2019, 43(5):872-880.
|
[8] |
Luo F, Wang G X, Zhou X H, et al. Research and implementation of data processing method for three-axis stabilized platform airborne gravity measuring system[J]. Geophysical and Geochemical Exploration, 2019, 43(5):872-880.
|
[9] |
罗锋, 郭志宏, 骆遥, 等. 航空重力数据的等波纹FIR 低通滤波试验[J]. 物探与化探, 2012, 36(5):856-860.
|
[9] |
Luo F, Guo Z H, Luo Y, et al. Equal-ripple FIR low-pass filtering test for airborne gravity data[J]. Geophysical and Geochemical Exploration, 2012, 36(5):856-860.
|
[10] |
蔡劭琨, 吴美平, 张开东. 航空重力测量中FIR低通滤波器的比较[J]. 物探与化探, 2010, 34(1):74-78.
|
[10] |
Cai S K, Wu M P, Zhang K D. Comparison of FIR low-pass filters in aerogravimetry[J]. Geophysical and Geochemical Exploration, 2010, 34(1):74-78.
|
[11] |
蔡体菁, 周薇, 鞠玲玲. 平台式重力仪测量数据的卡尔曼滤波处理[J]. 中国惯性技术学报, 2015, 23(6):718-720.
|
[11] |
Cai T J, Zhou W, Ju L L. Processing for measurement data of platform gravimeter by Kalman filter[J]. Journal of Chinese Inertial Technology, 2015, 23(6):718-720.
|
[12] |
王静波, 熊盛青, 郭志宏, 等. 航空重力数据Kalman滤波平滑技术应用研究[J]. 地球物理学进展, 2012, 27(4):1717-1722.
|
[12] |
Wang J B, Xiong S Q, Guo Z H, et al. Application of Kalman filtering smoothing technique for aeronautical gravity data[J]. Progress in Geophysics, 2012, 27(4):1717-1722.
|
[13] |
郭志宏, 熊盛青, 周坚鑫, 等. 航空重力重复线测试数据质量评价方法研究[J]. 地球物理学报, 2008, 51(5):1538-1543.
|
[13] |
Guo Z H, Xiong S Q, Zhou J X, et al. Study on the evaluation method of data quality for airborne gravity repeat line test[J]. Journal of Geophysics, 2008, 51(5):1538-1543.
|
[14] |
姜作喜, 张虹, 郭志宏. 航空重力测量内符合精度计算方法[J]. 物探与化探, 2010, 34(5):672-676.
|
[14] |
Jiang Z X, Zhang H, Guo Z H. Calculating method of internal coincidence accuracy in airborne gravimetry[J]. Geophysical and Geochemical Exploration, 2010, 34(5):672-676.
|
[1] |
MENG Qing-Kui, ZHOU Jian-Xin, SHU Qing, GAO Wei, XU Guang-Jing, WANG Chen-Yang. Application effect of Kalman filter in airborne full tensor magnetic gradient measurement based on theoretical model[J]. Geophysical and Geochemical Exploration, 2021, 45(2): 473-479. |
[2] |
WANG Guan-Xin, LUO Feng, ZHOU Xi-Hua, YAN Fang. Research on Kalman filter method for weak signal extraction of airborne gravity[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 76-83. |
|
|
|
|