|
|
Application study of improving the precision of the ant-tracking-based fracture prediction technique |
XIE Qing-Hui1( ), JIANG Li-Wei2, ZHAO Chun-Duan1, WANG Zhong-Da2, TANG Xie-Hua2, LUO Yu-Feng2 |
1. Schlumberger China,Beijing 100015,China 2. PetroChina Zhejiang Oilfield,Hangzhou 310023, China |
|
|
Abstract The YS1 area in Sichuan basin has undergone multiple stages of tectonic evolution.The faults are characterized by multiple stages and multiple strikes,and serious mud losses occurred in the drilled well.It is difficult to finely characterize fracture and analyze structural development when the conventional seismic interpretation method is used.In this study,according to the actual situation,ant tracking technology was used to predict fractures,whose accuracy was improved by noise reduction,continuity enhancement,fault boundaries height,and fake structures elimination.The process is as follows:firstly,the input seismic data volume is pre-processed by structure-oriented filtering and discontinuity detection,then the ant tracking parameter settings are optimized,and finally the ant tracking under the occurrence control is performed.The data can not only be used to assist fault interpretation but also provide a data basis for subsequent fault development analysis and horizontal well location deployment.
|
Received: 26 April 2021
Published: 15 December 2021
|
|
|
|
|
|
Optimized ant tracking workflow
|
|
Structure-oriented filtering maps in YS1 area a—original seismic profile;b—seismic profile after structure-oriented filtering
|
|
Seismic attributes slices in YS1 area a—variance slice;b—max curvature slice;c—chaos slice
|
参数 | 含义 | 特点 | 主动模式 | 被动模式 | 初始蚂蚁边界 | 定义蚂蚁的初始分布范围 | 越小越利于识别小尺度断层 | 5 | 7 | 追踪偏差 | 设置蚂蚁可搜索方向的偏离范围 | 越大越利于弯曲断层的识别 | 2 | 2 | 搜索步长 | 蚂蚁每次搜索的步长 | 越大搜索能力越大,但可能忽略细节 | 3 | 3 | 允许的非法步长 | 允许搜索超越定义步长的范围 | 越大越连续 | 2 | 1 | 合法步长 | 搜索路径中必须包含的合法步数 | 越小搜索越受限,越不连续 | 2 | 3 | 搜索中的门槛值 | 追踪过程中允许非法步长百分比 | 越大搜索能力越强 | 10 | 5 |
|
Parameters and meanings of ant tracking
|
|
Ant tracking slices in YS1 area a—passive ant tracking;b—aggressive ant tracking;c—occurrence-controlled aggressive ant tracking
|
|
Stereonet map using by occurrence controlled in Petrel
|
|
Ant tracking slices with different trends in YS1 area
|
|
Overlapping maps of fault polygons with seismic attributes a—overlapping map with variance;b—overlapping map with ant tracking
|
|
Seismic profile crossing YS1-3 a—original seismic profile;b—ant tracking
|
[1] |
梁志强. 不同尺度裂缝的叠后地震预测技术研究[J]. 石油物探, 2019, 58(5):766-772.
|
[1] |
Liang Z Q. Poststack seismic prediction techniques for fractures of different scales[J]. Geophysical Prospecting for Petroleum, 2019, 58(5):766-772.
|
[2] |
董马超, 吕海涛, 蒲仁海, 等. 塔中东部走滑断裂带特征及油气地质意义[J]. 石油物探, 2016, 55(6):840-850.
|
[2] |
Dong M C, Lyu H T, Pu R H, et al. Characteristics of strike-slip fault and its hydrocarbon geological significance in the eastern of central Tarism Basin[J]. Geophysical Prospecting for Petroleum, 2016, 55(6):840-850.
|
[3] |
刘振峰, 曲寿利, 孙建国, 等. 地震裂缝预测技术研究进展[J]. 石油物探, 2012, 51(2):191-198.
|
[3] |
Liu Z F, Qu S L, Sun J G, et al. Progress of seismic fracture characterization technology[J]. Geophysical Prospecting for Petroleum, 2012, 51(2):191-198.
|
[4] |
石学文, 佟彦明, 刘文平, 等. 页岩储层地震尺度断裂系统分析及其石油地质意义——以四川盆地长宁地区宁201井区为例[J]. 海相油气地质, 2019, 24(4):87-96.
|
[4] |
Shi X W, Tong Y M, Liu W P, et al. Analysis of seismic-scale fracture system of shale reservoir and its petroleum significance:A case study of well Ning 201 area of Changning Block, Sichuan Basin[J]. Marine Origin Petroleum Geology, 2019, 24(4):87-96.
|
[5] |
朱宝衡. 改进的蚂蚁追踪裂缝检测算法及其应用研究[J]. 海洋石油, 2019, 39(3):27-32.
|
[5] |
Zhu B H. Improved ant tracking crack detection algorithm and its application[J]. Offshore Oil, 2019, 39(3):27-32.
|
[6] |
Dorigo M, Maniezzo V, Colorni A. Ant system:Optimization by a colony of cooperating agents[J]. IEEE Transactions on Cybernetics, 1996, 26(1):29-41.
|
[7] |
周文, 尹太举, 张亚春, 等. 蚂蚁追踪技术在裂缝预测中的应用——以青西油田下沟组为例[J]. 岩性油气藏, 2015, 27(6):111-118.
|
[7] |
Zhou W, Yin T J, Zhang Y C, et al. Application of ant tracking technology to fracture prediction:A case study from Xiagou Formation in Qingxi Oilfield[J]. Northwest Oil & Gas Exploration, 2015, 27(6):111-118.
|
[8] |
王军, 李艳东, 甘利灯. 基于蚂蚁体各向异性的裂缝表征方法[J]. 石油地球物理勘探, 2013, 48(5):763-769.
|
[8] |
Wang J, Li Y D, Gan L D. Fracture characterization based on azimuthal anisotropy of ant-tracking attribute volumes[J]. Oil Geophysical Prospecting, 2013, 48(5):763-769.
|
[9] |
Sait B, Matthew J P. Fault and fracture distribution within a tight-gas sandstone reservoir:Mesaverde Group,Mamm Creek Field,Piceance Basin,Colorado,USA[J]. Petroleum Geoscience, 2013, 19(8):203-222.
|
[10] |
Andreas W, Mohamed S S. Integration of surface/subsurface techniques reveals faults in Gulf of Suez oilfields[J]. Petroleum Geoscience, 2011, 17(5):165-179.
|
[11] |
孙乐, 王志章, 李汉林, 等. 基于蚂蚁算法的断裂追踪技术在乌夏地区的应用[J]. 断块油气田, 2014, 21(6):716-721.
|
[11] |
Sun L, Wang Z Z, Li H L, et al. Application of fault tracking technology based on ant colony algorithm in Wuxia Area[J]. Fault-Block Oil & Gas Field, 2014, 21(6):716-721.
|
[12] |
李楠, 王龙颖, 黄胜兵, 等. 利用高清蚂蚁体精细解释复杂断裂带[J]. 石油地球物理勘探, 2019, 54(1):182-190.
|
[12] |
Li N, Wang L Y, Huang S B, et al. 3D seismic fine structural interpretation in complex fault zones based on the high-definition ant-tracking attribute volume[J]. Oil Geophysical Prospecting, 2019, 54(1):182-190.
|
[13] |
孙莎莎, 芮昀, 董大忠, 等. 中扬子地区晚奥陶世—早志留世古地理演化及页岩沉积模式[J]. 石油与天然气地质, 2018, 39(6):1087-1106.
|
[13] |
Sun S S, Rui Y, Dong D Z, et al. Paleogeographic evolution of the late Ordovician-early Silurian in upper and middle Yangtze regions and depositional model of shale[J]. Oil & Gas Geology, 2018, 39(6):1087-1106.
|
[14] |
郑浩, 蔡杰雄, 王静波. 基于构造导向滤波的高斯束层析速度建模方法及其应用[J]. 物探与化探, 2020, 44(2):372-380.
|
[14] |
Zheng H, Cai J X, Wang J B. Gaussian beam tomography with structure-filtering and its applications[J]. Geophysical and Geochemical Exploration, 2020, 44(2):372-380.
|
[15] |
赵明章, 范雪辉, 刘春芳, 等. 利用构造导向滤波技术识别复杂断块圈闭[J]. 石油地球物理勘探, 2011, 46(s1):128-133.
|
[15] |
Zhao M Z, Fan X H, Liu C F, et al. Complex fault-block traps identification with structure-oriented filter[J]. Oil Geophysical Prospecting, 2011, 46(s1):128-133.
|
[16] |
Fehmers G C, Hocker C F W. Fast Structural interpretation with structure-oriented filtering[J]. Geophysices, 2003, 68(4):1286-1293.
|
[17] |
李培培, 赵汝敏, 杨松岭, 等. 构造曲率与振幅曲率在地震资料解释中的应用[J]. 物探与化探, 2013, 37(5):916-920.
|
[17] |
Li P P, Zhao R M, Yang S L, et al. The application structural curvature and amplitude curvature attribute to seismic interpretation[J]. Geophysical and Geochemical Exploration, 2013, 37(5):916-920.
|
[18] |
李建雄, 崔全章, 魏小东. 地震属性在微断层解释中的应用[J]. 石油地球物理勘探, 2011, 46(6):925-929.
|
[18] |
Li J X, Cui Q Z, Wei X D. Application of seismic attributes in micro-fault interpretation[J]. Oil Geophysical Prospecting, 2011, 46(6):925-929.
|
[19] |
张永华, 张悦, 杜伟, 等. 混沌属性预测泌阳凹陷陡坡带小型砂砾岩体[J]. 特种油气藏, 2016, 23(3):11-15.
|
[19] |
Zhang Y H, Zhang Y, Du W, et al. Application of chaos attributes to predict the small-scale glutenite bodies in the steep-slope zone of Biyang depression[J]. Special Oil & Gas Reservoirs, 2016, 23(3):11-15.
|
[20] |
卢美月, 汤子余, 张永健. 蚂蚁追踪技术在Plutonio油田X区块中的应用[J]. 科学技术与工程, 2020, 20(8):2992-2996.
|
[20] |
Lu M Y, Tang Z Y, Zhang Y J. Application of ant tracking technology in X block of Plutonio oilfield[J]. Science Technology and Engineering, 2020, 20(8):2992-2996.
|
[1] |
HUANG Yan-Qing. Characterization of multi-attitude fractures in tight sandstones in the Yuanba area, northeastern Sichuan Basin[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1189-1197. |
[2] |
CHEN Geng-Sheng, XIE Qing-Hui, WU Jian-Fa, ZHAO Chun-Duan, XU Er-Si, PAN Yuan-Wei. Comprehensive application of the seismic multi-attribute technique combination in the tectonic interpretation of the Luzhou shale gas block[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1349-1358. |
|
|
|
|