|
|
A comparative study on polymetallic metallogenic characteristics of Xiangshan and Lengshuikeng ore fields |
PANG Wen-Jing1,2( ), CHEN Bei-Bei1,2, ZHOU Tao1,2, HUANG Rou-Rui1,2, ZHOU Yun-Yun1,2, GUO Fu-Sheng3, WU Zhi-Chun3, XIE Cai-Fu3 |
1. No.261 Geological Team of Jiangxi Nuclear Industry Geological Bureau,Yingtan 335001, China 2. Jiangxi Energy and Mineral Geological Survey and Research Institute,Nanchang 330103, China 3. School of Earth Sciences,East China University of Technology,Nanchang 330105,China |
|
|
Abstract More than 20 uranium deposits and polymetallic mineralization have been discovered in the Xiangshan ore field at present. However, breakthroughs in polymetallic prospecting are yet to be made in the ore field.This paper compared the Xiangshan ore field with the Lengshuikeng lead-zircon-silver polymetallic ore field at a high exploration level in terms of regional geological setting, strata, magmatic rocks, ore body characteristics, and wall-rock alteration. Based on this, it is found that the Xiangshan and Lengshuikeng ore fields are similar in geological conditions, the geochemical characteristics of rare earth elements (REEs) and trace elements, and the characteristics of ore bodies and alternation. Regarding lithology, both are mainly composed of volcanic rock series of the Cretaceous Ehuling and Daguding formations, which are present as high high-K calc-alkaline basalts and possess quasi-aluminous-weakly peraluminous characteristics. The REE-distribution patterns and trace element spider diagrams of the two ore fields are notably rightward, indicating the enrichment of light REEs, low content of Ba and Sr, and obvious Eu depletion. Therefore, the sediments in the two ore fields mainly originate from the crust. Meanwhile, the magmatic rocks feature a high crystallization differentiation degree, and the wall-rock alteration is dominated by chloritization, sericitization, silicification, and carbonation.By referring to the metallogenic model of the Lengshuikeng ore field, it is considered that the future polymetallic prospecting in the Xiangshan ore field should focus on the porphyry-type polymetallic ore in small rock masses and strata-bound, superimposed polymetallic ore at the K1d1 horizon. In this manner, breakthroughs are expected to be made in polymetallic prospecting in the Xiangshan ore field.
|
Received: 27 June 2021
Published: 21 December 2021
|
|
|
|
|
|
Geotectonic location of Xiangshan and Lengshuikeng ore fields
|
相山矿田 | 冷水坑矿田 | 盖 层 | 年代 地层 | 组 | 岩性 | 盖 层 | 年代 地层 | 组 | 岩性 | 下白 垩统 | 鹅湖 岭组 | 鹅湖岭组上段为相山矿田盖层火山岩主体,岩性为碎斑熔岩角砾岩、熔灰状碎斑熔岩、似层状碎斑熔岩;下段岩性主要为以火山爆发或火山灰流成因晶屑玻屑凝灰岩、弱熔结凝灰岩 | 下白 垩统 | 鹅湖 岭组 | 上段为强熔结凝灰岩、流纹质含角砾凝灰岩、流纹质凝灰角砾岩等;中段为流纹岩、流纹质熔结凝灰岩、集块角砾熔结凝灰岩、凝灰质粉砂岩;下段为流纹质熔结凝灰岩、晶屑凝灰岩、块状流纹岩、熔结凝灰岩、凝灰质含砾砂岩夹白云质灰岩等,也是层控叠生型银铅锌矿的主要赋矿部位 | 打鼓 顶组 | 上段主要为溢流相的流纹英安岩,局部为火山集块岩;下段以火山—沉积岩为主,主要有细砂岩、含砾砂岩、晶屑玻屑凝灰岩、流纹质熔结凝灰岩 | | 打鼓 顶组 | 上段为杏仁状安山岩、粗安岩、碱玄岩、自碎角砾安山岩、沉角砾凝灰岩,银坑一带底部为沉凝灰岩夹铁锰碳酸盐岩,是层控叠生型银铅锌矿的主要赋矿部位;下段为流纹质晶玻屑熔结凝灰岩、流纹岩,局部夹石泡流纹岩,玻屑凝灰岩 | 基 底 | 上三 叠统 | 安源 组 | 炭质页岩、砂页岩、含炭细砂岩 | 基 底 | 下石 炭统 | 梓山 组 | 石英砂砾岩、细砂岩、紫红色粉砂岩夹薄层炭质泥岩及煤层 | 下石 炭统 | 华山 岭组 | 内陆湖泊相沉积碎屑岩、石英细砂岩、含砾细砂岩 | 震旦 系 | 下坊 组 | 岩性以瘤状片岩、云母片岩、石墨云母片岩为主,夹含炭硅质岩、石英岩及镜铁矿云母石英岩 | 中元 古界 | | 黑云母石英片岩、绢云母千枚岩 | 老虎 塘组 | 云母石英片岩、石英云母片岩、黑云斜长片麻岩等 |
|
Stratigraphic characteristics of Xiangshan and Lengshuikeng ore fields
|
8] 1—Quaternary; 2—upper Cretaceous Nanxiong formation; 3—upper part of the lower Cretaceous Ehuling formation; 4—lower part of the lower Cretaceous Ehuling formation; 5—upper part of the lower Cretaceous Daguding formation; 6—lower part of the lower Cretaceous Daguding formation; 7—Triassic Anyuan formation; 8—Carboniferous Huashanling formation; 9— Mesoproterozoic; 10—granite porphyry; 11—granite; 12—fault structure ">
|
The geological map of Xiangshan ore field[8] 1—Quaternary; 2—upper Cretaceous Nanxiong formation; 3—upper part of the lower Cretaceous Ehuling formation; 4—lower part of the lower Cretaceous Ehuling formation; 5—upper part of the lower Cretaceous Daguding formation; 6—lower part of the lower Cretaceous Daguding formation; 7—Triassic Anyuan formation; 8—Carboniferous Huashanling formation; 9— Mesoproterozoic; 10—granite porphyry; 11—granite; 12—fault structure
|
9] 1—Quaternary; 2—lower Cretaceous Ehuling formation; 3—lower Cretaceous Daguding formation; 4—Carboniferous Zishan formation; 5—upper Sinian Laohutang formation; 6—rhyolitic porphyry; 7—K-feldspar granite porphyry; 8—quartz syenite porphyry; 9—ore bearing granite porphyry; 10—cryptoexplosive breccia; 11—unconformity boundary; 12—fault; 13—exploration line ">
|
The geological map of Lengshuikeng ore field[9] 1—Quaternary; 2—lower Cretaceous Ehuling formation; 3—lower Cretaceous Daguding formation; 4—Carboniferous Zishan formation; 5—upper Sinian Laohutang formation; 6—rhyolitic porphyry; 7—K-feldspar granite porphyry; 8—quartz syenite porphyry; 9—ore bearing granite porphyry; 10—cryptoexplosive breccia; 11—unconformity boundary; 12—fault; 13—exploration line
|
11,12] ">
|
Comparison of main element characteristics between volcanic-intrusive complex in Xiangshan ore field and intrusive in Lengshuikeng ore field[11,12]
|
11,12] ">
|
REE distribution patterns in Xiangshan and Lengshuikeng ore fields[11,12]
|
11,12] ">
|
Spider web map of standardized trace elements in primitive mantle of Xiangshanand Lengshuikeng ore fields[11,12]
|
| 相山矿田 | 冷水坑矿田 | 矿体类型 | 脉型矿体 | 斑岩型矿体 | 层状矿体 | 赋存部位 | 产于下白垩统打鼓顶组流纹英安岩与鹅湖岭组碎斑熔岩的接触面附近 | 矿体产于燕山中期第二阶段花岗斑岩体内外接触带附近 | 矿体分别产于下白垩统打鼓顶组下段、鹅湖岭组下段火山碎屑岩—碳酸盐岩、硅质岩建造中。靠近花岗斑岩体时即有层状矿体产出 | 矿体形态 | 脉状 | 透镜状 | 似层状、规则透镜状 | 矿体产状 | 与断裂构造产状一致 | 总体上与花岗斑岩体产状一致,倾向NW | 与火山岩地层产状基本一致,总体向SE倾 | 围岩蚀变 | 碳酸盐化、硅化、绢云母化及绿泥石化等蚀变 | 面型绿泥石化、绢云母化、碳酸盐化及黄铁矿化、硅化等 | 碳酸盐化、弱绢云母化及线型绿泥石化等蚀变 | 矿物组合 | 闪锌矿、方铅矿、黄铁矿、黄铜矿、磁黄铁矿、毒砂等 | 黄铁矿、闪锌矿、方铅矿、螺状硫银矿、自然银、石英、钾长石、斜长石、绿泥石、绢云母等 | 铁锰碳酸盐矿物、白云石、石英、碧玉、磁铁矿、赤铁矿、闪锌矿、方铅矿、螺状硫银矿、自然银等 | 矿石组构 | 半自形结构、溶蚀结构、乳滴结构、交代结构、细粒他形粒状结构,网脉状 | 细中粒半自形、他形粒状结构,交代结构,细脉浸染状、脉状构造为主 | 鲕状、细粒他形粒状结构、中细粒半自形结构、他形粒状结构,交代结构,细脉浸染状、脉状构造 | 化学成份 | 富含Fe、Mn,贫Si、Al、K、Na | 富含Si、Al、K,贫Mg、Ca、Na | 富含Fe、Mn、Ca,贫Si、Al、K、Na | 元素组合 | Cu-Ag-Pb-Zn | Ag-Pb-Zn-Cd-Cu-Au | Ag-Pb-Zn-Cd-Au | 成矿温度 | 230~300 ℃ | 170~210 ℃ | 270~314 ℃ | 成矿年龄 | 138.3~137.5 Ma[2] | 163.0~126 Ma[15] | 163.0~126 Ma[15] | 埋藏情况 | 隐伏状,标高-700~-1000 m | 以隐伏矿为主,部分出露地表 | 隐伏状,-56~-404 m |
|
Types and characteristics comparison of Xiangshan Pb-Zn orebody and Lengshuikeng orebody
|
|
Profile of line 26 in Niutoushan area of Xiangshan ore field 1—upper part of the lower Cretaceous Ehuling formation; 2—upper part of the lower Cretaceous Daguding formation ; 3—lower part of the lower Cretaceous Daguding formation; 4— Mesoproterozoic; 5—drilling for construction; 6—polymetallic alteration range; 7—polymetallic ore body
|
9] 1—lower Cretaceous Ehuling formation; 2—lower Cretaceous Daguding formation; 3—Sinian Laohutang formation; 4—granite porphyry; 5—rhyolitic porphyry; 6—layered lead zinc silver ore body; 7—porphyry ore body; 8—inferred fault ">
|
Profile of No.132 exploration line in Xiabao ore block of Lengshuikeng deposit[9] 1—lower Cretaceous Ehuling formation; 2—lower Cretaceous Daguding formation; 3—Sinian Laohutang formation; 4—granite porphyry; 5—rhyolitic porphyry; 6—layered lead zinc silver ore body; 7—porphyry ore body; 8—inferred fault
|
[1] |
聂江涛, 李子颖, 王健, 等. 江西相山矿田多金属成矿流体特征与成矿作用[J]. 地质通报, 2015, 34(2/3):535-547.
|
[1] |
Nie J T, Li Z Y, Wang J, et al. Characteristics of polymetallic ore-forming fluid and metallogenesis of the Xiangshan ore field in Jiangxi[J]. Geological Bulletin of China, 2015, 34(2/3):535-547.
|
[2] |
杨庆坤, 黄强太, 罗勇, 等. 江西相山铀矿田深部铅锌矿成矿流体演化特征[J]. 科学技术与工程, 2017, 17(5):132-141.
|
[2] |
Yang Q K, Huang Q T, Luo Y, et al. The characteristics of metallogenic fluid evolution of lead zinc polymetallic in Xiangshan ore field,Jiangxi Province[J]. Science Technology and Engineering, 2017, 17(5):132-141.
|
[3] |
王健, 聂江涛, 郭建, 等. 江西相山矿田深部多金属矿化特征[J]. 地质与勘探, 2016, 52(1):47-59.
|
[3] |
Wang J, Nie J T, Guo J, et al. Characteristics of deep polymetallic mineralization in the Xiangshan uranium ore field of Jiangxi Province[J]. Geology and Exploration, 2016, 52(1):47-59.
|
[4] |
肖茂章, 狄永军, 明小泉, 等. 冷水坑矿田层状富铅锌矿赋矿围岩——铁锰碳酸岩角砾岩物质来源及成因分析[J]. 中国地质, 2014, 41(2):589-601.
|
[4] |
Xiao M Z, Di Y J, Ming X Q, et al. Material sources and genetic analysis of the iron-manganese carbonatite breccia host rock of the stratiform Pb-Zn-rich orebodies in the Lengshuikeng orefield[J]. Geology in China, 2014, 41(2):589-601.
|
[5] |
左力艳, 侯增谦, 宋玉财, 等. 冷水坑斑岩型银铅锌矿床成矿流体特征研究[J]. 地球学报, 2009, 30(5):616-626.
|
[5] |
Zuo L Y, Hou Z Q, Song Y C, et al. A study of the ore-forming fuid in the Lengshuikeng Ag-Pb-Zn porphyry deposit[J]. Acta Geoscientica Sinica, 2009, 30(5):616-626.
|
[6] |
肖克炎, 邢树文, 丁建华, 等. 全国重要固体矿产重点成矿区带划分与资源潜力特征[J]. 地质学报, 2016, 90(7):1269-1280.
|
[6] |
Xiao K Y, Xing S W, Ding J H, et al. Division of major mineralization belts of China’s key solid mineral resources and their mineral resource potential[J]. Acta Geologica Sinica, 2016, 90(7):1269-1280.
|
[7] |
朱裕生, 肖克炎, 马玉波, 等. 中国成矿区带划分的历史与现状[J]. 地质学刊, 2013, 37(3):349-357.
|
[7] |
Zhu Y S, Xiao K Y, Ma Y B, et al. Review and status of mineralization belt study in China[J]. Journal of Geology, 2013, 37(3):349-357.
|
[8] |
林锦荣, 胡志华, 王勇剑, 等. 相山铀矿田铀多金属成矿时代与成矿热历史[J]. 岩石学报, 2019, 35(9):2801-2816.
|
[8] |
Lin J R, Hu Z H, Wang Y J, et al. Ore-forming age and thermal history of uranium-polymetallic mineralization in Xiangshan uranium orefield[J]. Acta Petrologica Sinica, 2019, 35(9):2801-2816.
|
[9] |
肖茂章, 漆光明. 江西冷水坑铅锌银矿田成矿系统与成矿模式[J]. 地质与勘探, 2014, 50(2):311-320.
|
[9] |
Xiao M Z, Qi G M. The metallogenic system and metallogenic model of the Lengshuikeng Pb-Zn-Ag orefield, Jiangxi province[J]. Geology and Exploration, 2014, 50(2):311-320.
|
[10] |
孟祥金, 侯增谦, 董光裕, 等. 江西冷水坑斑岩型铅锌银矿床地质特征、热液蚀变与成矿时限[J]. 地质学报, 2009, 83(12):1951-1967.
|
[10] |
eng X J, Hou Z Q, Dong G Y, et al. Geological characteristics and mineralization timing of the Lengshuikeng porphyry Pb-Zn-Ag deposit, Jiangxi Province[J]. Acta Geoscientica Sinica, 2009, 83(12):1951-1967.
|
[11] |
郭福生, 杨庆坤, 孟祥金, 等. 江西相山酸性火山—侵入杂岩体地球化学特征与岩石成因[J]. 地质学报, 2016, 90(4):769-784.
|
[11] |
Guo F S, Yang Q K, Meng X J, et al. Geochemical characteristics and petrogenesis of the acidic volcan-intrusive complexes, Xiangshan, Jiangxi[J]. Acta Geoscientica Sinica, 2016, 90(4):769-784.
|
[12] |
张春茂. 江西省冷水坑银铅锌矿床矿石特征及成矿条件[D]. 成都:成都理工大学, 2013.
|
[12] |
Zhang C M. Ore Characters and metallogenic conditions of the Lengshuikeng Ag-Pb-Zn deposit, Jiangxi Province[D]. Chengdu: Chengdu University of Technology, 2013.
|
[13] |
左利艳, 孟祥金, 杨竹森. 冷水坑斑岩型银铅锌矿床含矿岩系岩石地球化学及 Sr、Nd 同位素研究[J]. 矿床地质, 2008, 27(3):367-382.
|
[13] |
Zuo L Y, Meng X J, Yang Z S. Petrochemistry and Sr, Nd isotopes of intrusive in Lengshuikeng porphyry type Ag-Pb-Zn deposit[J]. Mineral Deposits, 2008, 27(3):367-382.
|
[14] |
龚雪婧, 曾建辉, 曹殿华. 江西冷水坑矿床含矿花岗斑岩的Sr-Nd及锆石Hf-O同位素研究[J]. 中国地质, 2019, 46(4):818-831.
|
[14] |
Gong X J, Zeng J H, Cao D H. Sr-Nd and zircon Hf-O isotopic constraints on the petrogenesis of the orebearing granitic porphyry at Lengshuikeng, Jiangxi Province[J]. Geology in China, 2019, 46(4):818-831.
|
[15] |
徐贻赣, 吴淦国, 王长明, 等. 江西冷水坑银铅锌矿田闪锌矿铷-锶测年及地质意义[J]. 地质学报, 2013, 87(5):621-633.
|
[15] |
Xu Y G, Wu G G, Wang C M, et al. Rb-Sr dating of sphalerites from the Lengshuikeng Ag-Pb-Zn deposit, Jiangxi, and its geological significances[J]. Acta Geologica Sinica, 2013, 87(5):621-633.
|
[16] |
骆学全, 张雪辉, 徐贻赣, 等. 江西冷水坑银铅锌矿床层状矿体的成矿模式及深部勘查方向[J]. 地质与勘探, 2013, 49(6):1078-1087.
|
[16] |
Luo X Q, Zhang X H, Xu Y G, et al. A metallogenic model for bedded orebodies in the Lengshuikeng Ag-Pb-Zn deposit, Jiangxi and deep exploration direction[J]. Geology and Exploration, 2013, 49(6):1078-1087.
|
[1] |
LIANG Wei-Tian, SUN Xin-Sheng, WANG Dong-Bo, FENG Jia-Xin, SUN Wen, CHEN Guang-Zhen. The application of the wide field electromagnetic method in the exploration of the Hewa polymetallic ore deposit[J]. Geophysical and Geochemical Exploration, 2020, 44(5): 1048-1052. |
[2] |
Bing-Kun BI, Yun-Zhen CHANG, Qiang SHI, Sui-shui SHEN. The application of geophysical exploration to prospecting for silver-lead-zinc deposits in shallow cover areas of eastern Xiaoshan[J]. Geophysical and Geochemical Exploration, 2019, 43(5): 976-985. |
|
|
|
|