|
|
Research and implementation of key technologies of spectral induced polarization instruments |
SHI Jia-Yu1( ), GUO Peng2, LI Yong3( ) |
1. School of Geophysics and Information Technology, China University of Geosciences (Beijing),Beijing 100083, China 2. Geophysical Survey Center of China Geological Survey,Langfang 065000, China 3. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences,Langfang 065000, China |
|
|
Abstract The measurement of the electrochemical polarization effect of rock (ore) in an AC electric field (i.e., the phase between receiving potential different and transmitting current) using spectral induced polarization (SIP) can provide important information for distinguishing ore from non-ore. Based on the deep research on the key technologies of SIP instruments, this study designs a new synchronous correlation detection technology of weak signals, and accordingly improves the prototype for practical purposes, simplifies the circuit structure, and improves the stability of phase measurement of the SIP instruments. The tests in mining areas show that the improved SIP instrument has lower cost, stronger anti-interference ability, higher practicability, and is suitable for large-scale promotion and application.
|
Received: 17 August 2021
Published: 21 December 2021
|
|
Corresponding Authors:
LI Yong
E-mail: wtshijiayu@163.com;cgslyong@mail.cgs.gov.cn
|
|
|
|
|
High precision synchronization principle block diagram
|
|
Timing diagram of synchronous clock, transmitting current and received voltage
|
|
High precision constant current principle block diagram
|
|
Phase detection principle based on hardware circuit
|
|
Principle block diagram of digital synchronous correlation detection
|
|
Field work sketch map
|
仪器编号 | | | 结论 | 实用化仪器(1) | <3.33 | 0.70 | <0.67 | 0.09 | 符合要求 | 实用化仪器(2) | <3.33 | 0.33 | <0.67 | 0.02 | 符合要求 | 原型仪器(16) | <3.33 | 0.59 | <0.67 | 0.24 | 符合要求 | 原型仪器(17) | <3.33 | 0.61 | <0.67 | 0.14 | 符合要求 | 原型仪器(18) | <3.33 | 0.34 | <0.67 | 0.14 | 符合要求 |
|
|
|
Comparison profile of two instruments on line 124
|
[1] |
吕庆田, 张晓培, 汤井田, 等. 金属矿地球物理勘探技术与设备:回顾与进展[J]. 地球物理学报, 2019, 62(10):3629-3664.
|
[1] |
Lyu Q T, Zhang X P, Tang J T, et al. Review on advancement in technology and equipment of geophysical exploration for metallic deposits in China[J]. Chinese Journal Geophysics, 2019, 62(10):3629-3664.
|
[2] |
刘崧. 谱激电法[M]. 武汉: 中国地质大学出版社, 1998.
|
[2] |
Liu S. Spectral induced polarization method[M]. Wuhan: China University of Geosciences Press, 1998.
|
[3] |
郭鹏, 肖都, 石福升, 等. 相位激电和时域激电对激电效应响应关系研究[J]. 物探化探计算技术, 2014, 36(6):697-683.
|
[3] |
Guo P, Xiao D, Shi F S, et al. Study on the response relationship between phase IP and time domain IP[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014, 36(6):697-683.
|
[4] |
张赛珍. 岩矿石的低频电相位频率特性的物理模型和它的拟合方法[A]// 中国科学院地球物理研究所论文摘要集(1984)[C], 1989.
|
[4] |
Zhang S Z. Physical model of low frequency electrical phase frequency characteristics of rock and ore and its fitting method[A]// Abstracts of Institute of Geophysics, Chinese Academy of Sciences(1984)[C], 1989.
|
[5] |
张宪润, 陈儒军. 激电相对相位法区分矿与非矿异常的成功实例[J]. 物探与化探, 1998, 22(4):251-254.
|
[5] |
Zhang X R, Chen R J. A successful example of distinguishing ore and non-ore anomalies by IP relative phase method[J]. Geophysical and Geochemical Exploration, 1998, 22(4):251-254.
|
[6] |
石福升. 大功率多频发射系统研究[D]. 北京:中国地质大学(北京),2005.
|
[6] |
Shi F S. Research on high power multi-frequency transmission system[D]. Beijing: China University of Geosciences(Beijing), 2005.
|
[7] |
石福升. 大功率多功能发射系统研究[J]. 地球物理学进展, 2009, 24(3):1109-1114.
|
[7] |
Shi F S. A study on high-power multi-function transmitting system[J]. Progress in Geophysics, 2009, 24(3):1109-1114.
|
[8] |
王猛, 金胜, 魏文博, 等. 大功率井—地电磁同步发射技术分析与系统实现[J]. 地球物理学报, 2019, 62(10):3794-3802.
|
[8] |
Wang M, Jin S, Wei W B, et al. The technique analysis and achievement of the high power borehole-ground electromagnetic synchronous transmitter system[J]. Chinese Journal Geophysics, 2019, 62(10):3794-3802.
|
[9] |
林君, 吴勇, 薛开昶, 等. CSAMT探测系统的低功耗高精度同步时钟源设计[J]. 中南大学学报:自然科学版, 2014, 45(9):3193-3199.
|
[9] |
Lin J, Wu Y, Xue K C, et al. Design of low power consumption and high precision synchronization clock reference source for CSAMT detection systems[J]. Journal of Central South University:Science and Technology, 2014, 45(9):3193-3199.
|
[10] |
真齐辉, 底青云. 高频大功率CSAMT发射技术研究[J]. 地球物理学报, 2017, 60(11):4160-4164.
|
[10] |
Zhen Q H, Di Q Y. High-frequency high-power CSAMT transmitting technology research[J]. Chinese Journal Geophysics, 2017, 60(11):4160-4164.
|
[11] |
中国地质科学院地球物理地球化学勘查研究所. 阵列相位激电测量系统完善与推广应用成果报告[R]. 2013.
|
[11] |
Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences. Report on improvement, popularization and application of array phase IP measurement system[R]. 2013.
|
[12] |
石福升. 高精度数字稳流技术研究[J]. 物探与化探, 2004, 28(4):358-360.
|
[12] |
Shi F S. A research of high-precision digital current-regulation technology[J]. Geophysical and Geochemical Exploration, 2004, 28(4):358-360.
|
[13] |
郭鹏, 肖都, 石福升. 阵列相位激电法在弱极化异常区的试验效果[J]. 物探与化探, 2012, 36(5):772-774.
|
[13] |
Guo P, Xiao D, Shi F S. Experimental effect of array phase IP method in weak polarization anomaly area[J]. Geophysical and Geochemical Exploration, 2012, 36(5):772-774.
|
[14] |
肖都, 郭鹏, 林品荣, 等. 相位激电法在强干扰区的应用试验[J]. 物探化探计算技术, 2016, 38(5):593-597.
|
[14] |
Xiao D, Guo P, Lin P R, et al. Application test of phase induced polarization method in strong interference area[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016, 38(5):593-597.
|
[1] |
WANG Fei-Fei, CHEN Ru-Jun, LI Sheng-Jie, SHEN Rui-Jie, YIN Hao, LIU Feng-Hai, PENG Xin. Development of the acquisition system of a broadband spectral induced polarization testers for rock and ore samples[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1454-1462. |
[2] |
HOU Sheng-Lan, CHEN Ru-Jun, WANG Zi-Hui, LIU Zhi-Tong, LIU Jin. Development of the NB-IoT-based measurement and control software for broadband SIP response testers for rock and ore specimens[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1463-1469. |
|
|
|
|