|
|
Geochemical background and management target values of heavy metals in soil in northwestern Guizhou Province |
MENG Wei( ), MO Chun-Hu, LIU Ying-Zhong |
Guizhou Academy of Geological Survey, Guiyang 550081, China |
|
|
Abstract Based on the heavy metal content data of 1 308 deep soil samples taken from the 1∶250 000 geochemical survey of land qualityin the Bijie area, Guizhou Province, the content distribution and geochemical background characteristics of heavy metals in soil in the area were studied. The geochemical background values of heavy metals in soil in northwestern Guizhou Provinceare significantly higher than those in soil nationwide but are close to those in soil in southwestern China. The heavy metal content in soil in northwestern Guizhou is closely related to the geological background and is significantly different between different geological units. The soil developing in Carboniferous strata has high geochemical background values of Pb and Zn, while the Middle Permian soil formed due to weathering hashigh geochemical background values of Cd and Hg. All these mean that besides heavy metal pollution in soil caused by zinc melting using indigenous methods,another important factor causing the heavy metal enrichment is the high geochemical background values of heavy metals in soil.The statistics show that the management target value of Cd in the Middle Permian weathered soil in northwestern Guizhou is higher than thecontrol value (2.0×10-6) of Cd stipulated in the Risk Management Standard for Agricultural Land for Soil Pollution in China. It is considered that the differences in geochemical background values of heavy metals in soil between different geological units and their impacts on the ecological environment should be fully considered when determining the management target values of heavy metals in soil in northwestern Guizhou Province.
|
Received: 08 February 2021
Published: 25 February 2022
|
|
|
|
|
|
Distribution of the deep soil samples
|
元素 | 剔除前 | 剔除后 | 变化范围/10-6 | 数据类型 | 管理目标值/ 10-6 | 平均值/10-6 | 离差 | 最小值/10-6 | 最大值/10-6 | 平均值/10-6 | 离差 | As | 13.8 | 5.9 | 1.4 | 327.8 | 13.3 | 5.5 | 2.0~25.6 | 其他 | 25.6 | Cd | 0.270 | 0.121 | 0.019 | 10.90 | 0.244 | 0.095 | 0.028~0.512 | 其他 | 0.512 | Cr | 141.4 | 1.48 | 23.83 | 489.3 | 137.6 | 1.43 | 67.0~282.6 | 对数 | 282.6 | Cu | 70.2 | 31.0 | 1.94 | 386.4 | 65.1 | 29.3 | 6.5~123.7 | 其他 | 123.7 | Hg | 0.132 | 0.054 | 0.012 | 2.642 | 0.128 | 0.05 | 0.024~0.24 | 其他 | 0.24 | Ni | 61.5 | 14.9 | 7.71 | 157.65 | 61.3 | 14.6 | 46.7~75.9 | 其他 | 75.9 | Pb | 28.6 | 6.9 | 8.37 | 844.1 | 27.4 | 5.8 | 14.8~42.4 | 其他 | 42.4 | Zn | 118.4 | 24.2 | 18.11 | 902.9 | 116.0 | 22.0 | 70~166.9 | 其他 | 166.9 |
|
The content of heavy metals in deep soil of northwest Guizhou and its management target value
|
|
Spatial distribution of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn in deep soil of northwest Guizhou
|
元素 | 成土母岩地 层单元 | 剔除前 | 剔除后 | 变化范围/10-6 | 数据类型 | 管理目标值/ 10-6 | 平均值/10-6 | 离差 | 最小值/10-6 | 最大值/10-6 | 平均值/10-6 | 离差 | As | 三叠系 | 17.1 | 7.9 | 2.08 | 43.3 | 16.9 | 7.6 | 1.2~33.0 | 正态 | 33 | | 二叠系 | 11.2 | 2.0 | 1.42 | 167.1 | 10.1 | 1.8 | 2.72~45.8 | 对数 | 45.8 | | 石炭系 | 20.5 | 1.55 | 5.37 | 102.3 | 19.6 | 1.4 | 8.5~49.5 | 对数 | 49.5 | | 寒武系 | 20.3 | 1.52 | 9.73 | 68.8 | 19.5 | 1.4 | 8.8~46.8 | 对数 | 46.8 | | 二叠系中统 | 15.1 | 3.6 | 4.33 | 68.2 | 14.9 | 3.3 | 8.0~22.3 | 其他 | 22.3 | Cd | 三叠系 | 0.206 | 0.16 | 0.052 | 2.348 | 0.191 | 0.062 | 0.067~0.315 | 正态 | 0.315 | | 二叠系 | 0.430 | 0.249 | 0.019 | 5.872 | 0.390 | 0.209 | 0.02~0.927 | 其他 | 0.927 | | 石炭系 | 0.399 | 0.186 | 0.114 | 2.69 | 0.388 | 1.81 | 0.027~0.771 | 对数 | 0.771 | | 寒武系 | 0.197 | 0.045 | 0.091 | 0.548 | 0.195 | 0.045 | 0.107~0.287 | 其他 | 0.287 | | 二叠系中统 | 0.924 | 0.585 | 0.117 | 5.872 | 0.834 | 0.507 | 0.02~2.093 | 其他 | 2.093 | Cr | 三叠系 | 130.0 | 26.6 | 42.72 | 489.3 | 126.4 | 23.0 | 76.7~183.1 | 其他 | 183.1 | | 二叠系 | 158.3 | 1.36 | 74.95 | 396.6 | 156.0 | 1.34 | 85.6~293.0 | 对数 | 293.0 | | 石炭系 | 120.1 | 25.6 | 63.20 | 186.3 | 120.1 | 25.6 | 69.0~171.2 | 正态 | 171.2 | | 寒武系 | 73.9 | 1.18 | 54.67 | 130.9 | 72.5 | 1.14 | 53.1~103.0 | 对数 | 103.0 | | 二叠系中统 | 290.7 | 1.361 | 84.69 | 301.4 | 156.8 | 1.361 | 84.6~290.7 | 对数 | 290.7 | Cu | 三叠系 | 56.2 | 1.5 | 10.4 | 145.8 | 55.6 | 1.5 | 26.2~118.0 | 对数 | 118.0 | | 二叠系 | 129.1 | 66.1 | 15.0 | 315.4 | 129.1 | 66.1 | 0~261.3 | 正态 | 261.3 | | 石炭系 | 41.7 | 17.7 | 14.6 | 163.6 | 40.2 | 12.7 | 14.8~65.6 | 正态 | 65.6 | | 寒武系 | 31.9 | 1.5 | 19.7 | 166.9 | 30.2 | 1.2 | 19.5~46.8 | 对数 | 46.8 | | 二叠系中统 | 87.0 | 49.7 | 15.0 | 263.3 | 85.3 | 46.8 | 0~178.9 | 正态 | 178.9 | Hg | 三叠系 | 0.117 | 0.048 | 0.025 | 0.376 | 0.114 | 0.042 | 0.022~0.212 | 正态 | 0.212 | | 二叠系 | 0.182 | 0.087 | 0.028 | 2.238 | 0.172 | 0.078 | 0.007~0.357 | 其他 | 0.357 | | 石炭系 | 0.155 | 0.054 | 0.025 | 0.391 | 0.155 | 0.054 | 0.047~0.263 | 其他 | 0.263 | | 寒武系 | 0.141 | 0.023 | 0.071 | 2.643 | 0.138 | 0.037 | 0.094~0.187 | 正态 | 0.187 | | 二叠系中统 | 0.267 | 0.062 | 0.036 | 1.091 | 0.262 | 0.06 | 0.143~0.391 | 其他 | 0.391 | Ni | 三叠系 | 56.8 | 1.4 | 14.2 | 115.4 | 56.8 | 1.4 | 28.2~114.6 | 对数 | 114.6 | | 二叠系 | 70.0 | 22.0 | 8.77 | 142.6 | 69.3 | 21.0 | 27.3~109.3 | 正态 | 109.3 | | 石炭系 | 52.8 | 17.4 | 14.0 | 109.0 | 51.5 | 15.6 | 20.3~82.7 | 正态 | 82.7 | | 寒武系 | 37.5 | 1.3 | 27.3 | 75.1 | 35.9 | 1.2 | 24.9~51.7 | 对数 | 51.7 | | 二叠系中统 | 67.5 | 24.6 | 8.77 | 142.6 | 66.0 | 22.6 | 20.8~111.2 | 正态 | 111.2 | Pb | 三叠系 | 29.5 | 7.5 | 12.15 | 54.6 | 29.4 | 7.3 | 14.5~44.6 | 正态 | 44.6 | | 二叠系 | 27.2 | 1.43 | 9.68 | 221.4 | 26 | 1.32 | 16.8~35.9 | 对数 | 35.9 | | 石炭系 | 50.6 | 16.9 | 22.60 | 643.1 | 47.6 | 13.3 | 16.8~84.4 | 其他 | 84.4 | | 寒武系 | 39.1 | 8.3 | 23.85 | 547.6 | 38.8 | 8.3 | 22.4~55.7 | 其他 | 55.7 | | 二叠系中统 | 31.9 | 11.7 | 15.07 | 95.6 | 32 | 9.65 | 8.5~55.3 | 正态 | 55.3 | Zn | 三叠系 | 101.9 | 12.7 | 31.79 | 211.8 | 101.9 | 12.7 | 76.4~127.4 | 其他 | 127.4 | | 二叠系 | 134 | 21.2 | 32.05 | 403.4 | 133 | 21.2 | 91.5~176.5 | 其他 | 176.5 | | 石炭系 | 154.2 | 1.76 | 42.00 | 902.9 | 144.0 | 1.63 | 50.0~475.3 | 对数 | 475.3 | | 寒武系 | 99.1 | 87.4 | 47.05 | 466 | 74.9 | 15.4 | 44.1~105.7 | 正态 | 105.7 | | 二叠系中统 | 136.8 | 42.9 | 32.05 | 275.6 | 135.4 | 40.9 | 51.0~222.5 | 正态 | 222.5 |
|
Heavy metal content and management target value of weathered soil in various geological units in northwest Guizhou
|
不同评价单元 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | 中国深层土壤中位数值[24] | 9(0.7) | 0.11(0.5) | 50(0.4) | 19(0.3) | 0.018(0.1) | 22(0.4) | 21(0.8) | 60(0.5) | 中国城市深层土壤均值[3] | 10(0.8) | 0.11(0.5) | 73(0.5) | 24(0.4) | 0.042(0.3) | 29(0.5) | 23(0.8) | 68(0.6) | 山东省深层土壤均值[25] | 8.7(0.7) | 0.092(0.4) | 62.6(0.5) | 21.3(0.3) | 0.016(0.1) | 27.9(0.5) | 21.4(0.8) | 58.6(0.5) | 江苏省深层土壤均值[26] | 9.4(0.7) | 0.085(0.3) | 75.6(0.5) | 23.4(0.4) | 0.025(0.2) | 32.8(0.5) | 22(0.8) | 64.8(0.6) | 贵阳市深层土壤均值[27] | 23.99(1.8) | 0.296(1.2) | 100.9(0.7) | 46.9(0.7) | 0.222(1.7) | 42(0.7) | 38.9(1.4) | 106.1(0.9) | 成都市区深层土壤均值[3] | 13(1.0) | 0.13(0.5) | 81(0.6) | 30(0.5) | 0.047(0.4) | 37(0.6) | 23(0.8) | 76(0.7) | 重庆市区深层土壤均值[3] | 5(0.4) | 0.11(0.5) | 80(0.6) | 26(0.4) | 0.06(0.5) | 32(0.5) | 26(0.9) | 80(0.7) | 昆明市区深层土壤均值[3] | 9(0.7) | 0.27(1.1) | 97(0.7) | 69(1.1) | 0.132(1.0) | 44(0.7) | 41(1.5) | 90(0.8) |
|
Comparison of mean values of heavy metal elements in deep soil of Northwest Guizhou and different evaluation units in China
|
|
Relative change rate of As, Cd, Cr, Cu,Hg, Ni,Pb and Zn management target of deep soil weathered in different strata 1—Triassic;2—Permian;3—Carboniferous;4—Cambrian;5—middle Permian
|
[1] |
中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
|
[1] |
China National Environmental Monitoring Centre. Background values of soil elements in China [M]. Beijing: China Environmental Science Press, 1990.
|
[2] |
陈同斌. 区域土壤环境质量[M]. 北京: 科学出版社, 2015.
|
[2] |
Chen T B. Regional soil environmental quality [M]. Beijing: Science Press, 2015.
|
[3] |
成杭新, 李括, 李敏, 等. 中国城市土壤化学元素的背景值与基准值[J]. 地学前缘, 2014,21(3):265-306.
|
[3] |
Cheng H X, Li K, Li M, et al. Geochemical background and baseline value of chemical elements in urban soil in China[J]. Earth Science Frontiers, 2014,21(3):265-306.
|
[4] |
李括, 彭敏, 杨峥, 等. 中国193个城市规划区土壤微量元素污染与健康风险[J]. 环境科学, 2020,41(4):1825-1837.
|
[4] |
Li K, Peng M, Yang Z, et al. Trace metals pollution and health risks for planning area soils of 193 Chinese Cities[J]. Environmental Science, 2020,41(4):1825-1837.
|
[5] |
应蓉蓉, 张晓雨, 孔令雅, 等. 农用地土壤环境质量评价与类别划分研究[J]. 生态与农村环境学报, 2020,36(1):18-25.
|
[5] |
Ying R R, Zhang X Y, Kong L Y, et al. Technical analysis of soil environmental quality evaluation and category classification of agricultural land[J]. Journal of Ecology and Rural Environment, 2020,36(1):18-25.
|
[6] |
骆永明, 夏家淇, 章海波, 等. 中国土壤环境质量基准与标准制定的理论和方法[M]. 北京: 科学出版社, 2015.
|
[6] |
Luo Y M, Xia J Q, Zhang H B, et al. The theory and method of soil environmental quality standards in China [M]. Beijing: Science Press, 2015.
|
[7] |
成杭新, 李括, 李敏, 等. 中国城市土壤微量金属元素的管理目标值和整治行动值[J]. 地学前缘, 2015,22(5):215-225.
|
[7] |
Cheng H X, Li K, Li M, et al. Management target value (MTV) and rectification action value (RAV) of trace metals in urban soil in China[J]. Earth Science Frontiers, 2015,22(5):215-225.
|
[8] |
肖克炎, 邢树文, 丁建华, 等. 全国重要固体矿产重点成矿区带划分与资源潜力特征[J]. 地质学报, 2016,90(7):1269-1280.
|
[8] |
Xiao K Y, Xing S W, Ding J S, et al. Division of major mineralization belts of China’s key solid mineral resources and their mineral resource potential[J]. Acta Geologica Sinica, 2016,90(7):1269-1280.
|
[9] |
许笠. 贵州省赫章县妈姑地区传统炼锌工艺考察[J]. 自然科学史研究, 1986,5(4):361-369.
|
[9] |
Xu L. Investigation on traditional zinc smelting process in Magu area, Hezhang County, Guizhou Province[J]. Studies in the History of Natural Sciences, 1986,5(4):361-369.
|
[10] |
Bi X, Feng X B, Yang Y G, et al. Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, western Guizhou, China[J]. Environment International, 2006,32(7):883-890.
|
[11] |
冯艳红, 郑丽萍, 应蓉蓉, 等. 黔西北炼锌矿区土壤重金属形态分析及风险评价[J]. 生态与农村环境学报, 2017,33(2):142-149.
|
[11] |
Feng Y H, Zheng L P, Ying R R, et al. Forms of heavy metals in soils of zinc mining area in northwestern Guizhou Province and their environmental risks[J]. Journal of Ecology and Rural Environment, 2017,33(2):142-149.
|
[12] |
丁玉娟, 林昌虎, 何腾兵, 等. 贵州草海耕地土壤重金属污染特征及安全评价[J]. 贵州科学, 2013,31(2):47-51.
|
[12] |
Ding Y J, Lin C H, He T B, et,al. Characteristics and safety evaluation of farmland soil polluted by heavy metals in Caohai of Guizhou[J]. Guizhou Science, 2013,31(2):47-51.
|
[13] |
赵斌, 朱四喜, 杨秀琴, 等. 贵州草海菜地表层土壤重金属污染特征及生态风险评价[J]. 生态环境学报, 2018,27(4):776-784.
|
[13] |
Zhao B, Zhu S X, Yang X Q, et al. Characteristics of heavy metals pollution and ecological risk assessment of the surface soils in the vegetable fields around Caohai in Guizhou[J]. Ecology and Environmental Sciences, 2018,27(4):776-784.
|
[14] |
张富贵, 彭敏, 王惠艳, 等. 基于乡镇尺度的西南重金属高背景区土壤重金属生态风险评价[J]. 环境科学, 2020,41(9):321-333.
|
[14] |
Zhang F G, Peng M, Wang H Y, et al. Ecological risk assessment of heavy metals at township scale in the high background of heavy metals, Southwestern, China[J]. Environmental Science, 2020,41(9):321-333.
|
[15] |
唐瑞玲, 王惠艳, 吕许朋, 等. 西南重金属高背景区农田系统土壤重金属生态风险评价[J]. 现代地质, 2020,34(5):917-927.
|
[15] |
Tang R L, Wang H Y, Lyu X P, et al. Ecological risk assessment of heavy metals in farmland system from an area with high background of heavy metals, Southwestern China[J]. Geoscience, 2020,34(5):917-927.
|
[16] |
成杭新, 刘飞, 周亚龙, 等. 表生地球化学动力学与中国西南土壤中化学元素分布模式的驱动机制[J]. 地学前缘, 2019,26(6):159-191.
|
[16] |
Cheng H X, Liu F, Zhou Y L, et al. Epigentic geochemical dynamics and riving mechanisms of distribution pattens of chemical elements in soil, Southwest China[J]. Earth Science Frontiers, 2019,26(6):159-191.
|
[17] |
Liu Y Z, Xiao T F, Ning Z P, et al. High cadmium concentration in soil in the Three Gorges region: Geogenic source and potential bioavailability[J]. Applied Geochemistry, 2013,37:149-156.
|
[18] |
Wen Y B, Li W, Yang Z F, et al. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China[J]. Chemosphere, 2020,245:125620.
|
[19] |
Xia X Q, Ji J F, Yang Z F, et al. Cadmium risk in the soil-plant system caused by weathering of carbonate bedrock[J]. Chemosphere, 2020,254:126799.
|
[20] |
Liu Y Z, Xiao T F, Perkins R B, et al. Geogenic cadmium pollution and potential health risks, with emphasis on black shale[J]. Journal of Geochemical Exploration, 2017,176:42-49.
|
[21] |
Wang H X, Li X M, Chen Y, et al. Geochemical behavior and potential health risk of heavy metals in basalt-derived agricultural soil and crops: A case study from Xuyi County, eastern China[J]. Science of the Total Environment, 2020,729:139058.
|
[22] |
贵州省地质调查院. 中国区域地质志(贵州志)[M]. 北京: 地质出版社, 2017.
|
[22] |
Guizhou Academy of Geologic Survey. Regional geology of China (Guizhou) [M]. Berijing: Geological Publishing House, 2017.
|
[23] |
蔡大为, 李龙波, 蒋国才, 等. 贵州耕地主要元素地球化学背景值统计与分析[J]. 贵州地质, 2020,37(3):233-239.
|
[23] |
Cai D W, Li L B, Jiang G C, et al. Statistics and analysis of geochemical backgrounds of main elements of cultivated land in Guizhou Province[J]. Guizhou Geology, 2020,37(3):233-239.
|
[24] |
王学求, 周建, 徐善法, 等. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 2016,43(5):1469-1480.
|
[24] |
Wang X Q, Zhou J, Xu S F, et al. China soil geochemical baselines networks: Data characteristics[J]. Geology in China, 2016,43(5):1469-1480.
|
[25] |
庞绪贵, 代杰瑞, 喻超, 等. 山东省17市土壤地球化学基准值[J]. 山东国土资源, 2019,35(1):39-48.
|
[25] |
Pang X G, Dai J R, Yu C, et al. Soil geochemical reference value of 17 cities in Shandong Province[J]. Shandong Land and Resources, 2019,35(1):39-48.
|
[26] |
廖启林, 刘聪, 许艳, 等. 江苏省土壤元素地球化学基准值[J]. 中国地质, 2011,38(5):1363-1378.
|
[26] |
Liao Q L, Liu C, Xu Y, et al. Geochemical baseline values of elements in soil of Jiangsu Province[J]. Geology in China, 2011,38(5):1363-1378.
|
[27] |
何邵麟, 陈武, 刘应忠, 等. 贵阳市土壤地球化学背景与生态环境分析[J]. 地球与环境, 2015,43(6):57-67.
|
[27] |
He S L, Chen W, Liu Y Z, et al. Geochemical background and ecologic environment of soil in Guiyang City Guizhou Province, China[J]. Earth and Environment, 2015,43(6):57-67.
|
[28] |
中国地质调查局发展中心. 中国地球化学系列图[M]. 北京: 地质出版社, 2018.
|
[28] |
Development Research Center of China Geological Survey. Geochemical atlas of China [M]. Beijing: Geological Publishing House, 2018.
|
[29] |
李松涛, 刘建中, 何明友, 等. 黔西北威宁地区香炉山铜矿床地质地球化学特征及成因[J]. 地质与勘探, 2016,52(5):826-837.
|
[29] |
Li S T, Liu J Z, He M Y, et al. Geological and geochemical characteristics and genesis of the Xianglushan copper deposit in the Weining area,northwest Guizhou[J]. Geology and Exploration, 2016,52(5):826-837.
|
[1] |
XUE Dong-Xu, LIU Cheng, GUO Fa, WANG Jun, XU Duo-Xun, YANG Sheng-Fei, ZHANG Pei. Predicting the geothermal resources of the Tangyu geothermal field in Meixian County, Shaanxi Province, based on soil radon measurement and the controlled source audio magnetotelluric method[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1169-1178. |
[2] |
QUE Ze-Sheng, LI Guan-Chao, HU Ying, JIAN Rui-Min, LIU Bing. GIS-based assessment of the radioactivity levels and risks of soil environment[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1336-1347. |
|
|
|
|