|
|
Potential assessment of gold, copper, lead, zinc, tungsten, and tin deposits in Kyrgyzstan based on 1∶1 000 000 scale geochemical data |
WANG Bin(), LUO Yan-Jun(), MENG Guang-Lu, ZHANG Jing, ZHANG Hai-Di, CHEN Bo, HE Zi-Xin |
Xi’an Center of Geological Survey, China Geological Survey, Xi’an 710054, China |
|
|
Abstract As an important part of the Tianshan metallogenic belt in Central Asia, Kyrgyzstan boasts rich mineral resources and completely types of mineral resources. The national scale (1∶1 000 000) geochemical mapping of Kyrgyzstan covers an area of about 170 000 km2 across the country and the analyses and tests of 69 elements. It has filled in the blank of national geochemical mapping in Kyrgyzstan and will provide basic geochemical data for studies on basic geology, mineral development, environmental protection, and agricultural production inthe country. According to the regional geologic and structural evolution and geochemical background, the study area is divided into five structural geochemical regions. According to the geological background and the statistical analysis of geochemical parameters of major metallogenic elements, it is considered that Kyrgyzstan is a metallogenic favorable region of Au, Cu, Pb, Sb, Sn, W, and Ag, with notably distributed geochemical anomalies. In detail, the northern Tianshan Mountain shows high anomalies of Au, Cu, Pb, Zn, Ag, Be, and As. The middle Tianshan Mountaincan be divided into the eastern and western parts with the Fergana fault as the boundary. Among them, the western part is rich in Au, Cu, Cr, Mo, and Co, while the eastern part is rich in Au, W, Sn, Co, Cr, and Ni. As for the southern Tianshan Mountain, the western part is characterized by the concentrated distribution of Cu, Co, Cr, Ni, Au, As, Sb,and Hg, while the eastern part is characterized by the distribution of W, Sn, and Bi associations. The analytical results of metallogenic significance are as follows.The Chattkar area in middle Tianshan Mountain is considered the area with the highest prospecting potential in Kyrgyzstan. It has enormous potential for the prospecting of Cu, Pb, Au, and W. It is followed by the Zarejaz area in the eastern part of the southern Tianshan Mountain, which also has great prospecting potential and is highly favorable forthe prospecting of Au, CU, W, and Sn. Besides, the western part of the southern Tianshan Mountain and the Talas-Narun area also enjoygood prospecting potential and are prospecting favorable areas of gold, copper, lead, and zinc polymetallic deposits.
|
Received: 29 December 2020
Published: 25 February 2022
|
|
Corresponding Authors:
LUO Yan-Jun
E-mail: 305590518@qq.com;11282186@qq.com
|
|
|
|
Cite this article: |
Bin WANG,Yan-Jun LUO,Guang-Lu MENG, et al. Potential assessment of gold, copper, lead, zinc, tungsten, and tin deposits in Kyrgyzstan based on 1∶1 000 000 scale geochemical data[J]. Geophysical and Geochemical Exploration,
2022, 46(1): 58-69.
|
|
|
|
URL: |
https://www.wutanyuhuatan.com/EN/10.11720/wtyht.2022.2594 OR https://www.wutanyuhuatan.com/EN/Y2022/V46/I1/58 |
|
Actual sampling site map of 1∶1 million geochemical mapping for Kyrgyzstan
|
元素 | 分析方法 | 检出限 | 元素 | 分析方法 | 检出限 | 元素 | 分析方法 | 检出限 | Ag | ES | 0.01 | Mo | POL | 0.2 | Zr | XRF | 1.5 | As | AFS | 0.2 | N | VOL | 15 | SiO2 | XRF | 0.05 | Au | ICP-MS | 0.0002 | Nb | XRF | 1.4 | Al2O3 | XRF | 0.03 | B | ES | 0.64 | Ni | ICP-OES | 1 | TFe2O3 | XRF | 0.02 | Ba | ICP-OES | 5 | P | XRF | 5 | MgO | ICP-OES | 0.02 | Be | ICP-MS | 0.1 | Pb | ICP-MS | 0.2 | CaO | ICP-OES | 0.02 | Bi | AFS | 0.03 | Rb | XRF | 3 | Na2O | ICP-OES | 0.02 | Br | XRF | 0.5 | S | VOL | 15 | K2O | XRF | 0.03 | Cd | ICP-MS | 0.02 | Sb | AFS | 0.03 | C | HFI | 0.02 | Cl | XRF | 5 | Sc | ICP-MS | 0.1 | La | ICP-MS | 0.1 | Co | ICP-MS | 0.1 | Se | AFS | 0.01 | Ce | ICP-MS | 0.2 | Cr | XRF | 2 | Sn | ES | 0.21 | Pr | ICP-MS | 0.015 | Cs | ICP-MS | 0.2 | Sr | ICP-OES | 2 | Nd | ICP-MS | 0.078 | Cu | ICP-MS | 0.1 | Ta | ICP-MS | 0.1 | Sm | ICP-MS | 0.027 | F | ISE | 30 | Te | AFS | 0.005 | Eu | ICP-MS | 0.009 | Ga | ICP-MS | 0.1 | Th | ICP-MS | 0.2 | Gd | ICP-MS | 0.027 | Ge | ICP-MS | 0.05 | Ti | XRF | 5 | Tb | ICP-MS | 0.017 | Hf | XRF | 0.1 | Tl | ICP-MS | 0.05 | Dy | ICP-MS | 0.032 | Hg | AFS | 0.0005 | U | ICP-MS | 0.05 | Ho | ICP-MS | 0.007 | I | VOL | 0.2 | V | ICP-OES | 2 | Er | ICP-MS | 0.031 | In | ICP-MS | 0.005 | W | POL | 0.3 | Tm | ICP-MS | 0.007 | Li | ICP-MS | 1 | Y | XRF | 0.8 | Yb | ICP-MS | 0.031 | Mn | ICP-OES | 5 | Zn | ICP-MS | 1 | Lu | ICP-MS | 0.005 |
|
69 elemental analysis methods and detection limit
|
|
Geochemical map of Cu elements in Kyrgyzstan
|
|
Sn, W, Bi anomaly map of Kyrgyzstan
|
|
Geochemical zoning map of Kyrgyzstan
|
一级构造单元 | 二级构造单元 | 构造地球化学分区 | 哈萨克斯坦—准噶尔板块(Ⅰ) | 北天山(Ⅰ1) | Ⅰ1-1伊塞克地块地球化学区 | 中天山(Ⅰ2) | Ⅰ2-1塔拉斯—纳伦地球化学区 | Ⅰ2-2恰特卡尔地球化学区 | 塔里木板块(Ⅱ) | 南天山(Ⅱ1) | Ⅱ1-1南天山西段地球化学区 | Ⅱ1-2南天山东段地球化学区 |
|
Geochemical division of Kyrgyzstan
|
元素 | 数据个数 | 最小值 | 下四分位数 | 几何平均值 | 算术平均值 | 中位数 | 上四分位数 | 最大值 | 标准离差 | Ag | 1756 | 0.002 | 0.039 | 0.059 | 0.080 | 0.058 | 0.086 | 6.680 | 0.215 | Al2O3 | 1756 | 0.150 | 8.000 | 9.360 | 10.250 | 11.280 | 12.880 | 16.860 | 3.410 | As | 1756 | 0.300 | 4.600 | 6.900 | 11.300 | 7.100 | 10.600 | 1542.600 | 45.700 | Au | 1756 | 0.100 | 0.500 | 1.000 | 2.700 | 1.000 | 1.800 | 584.600 | 19.400 | B | 1756 | 2.000 | 18.000 | 29.000 | 38.000 | 32.000 | 52.000 | 257.000 | 26.000 | Ba | 1756 | 32.000 | 479.000 | 632.000 | 743.000 | 650.000 | 861.000 | 4689.000 | 476.000 | Be | 1756 | 0.100 | 1.100 | 1.500 | 1.800 | 1.800 | 2.300 | 9.600 | 0.900 | Bi | 1756 | 0.010 | 0.140 | 0.200 | 0.280 | 0.200 | 0.290 | 18.960 | 0.620 | Br | 1756 | 0.100 | 0.700 | 1.010 | 1.340 | 1.000 | 1.600 | 30.200 | 1.470 | CaO | 1756 | 0.220 | 2.330 | 5.250 | 8.630 | 5.350 | 11.290 | 50.790 | 8.930 | Cd | 1756 | 0.003 | 0.077 | 0.125 | 0.170 | 0.125 | 0.202 | 19.365 | 0.475 | Ce | 1756 | 2.400 | 34.200 | 46.200 | 53.200 | 49.100 | 65.000 | 262.000 | 29.000 | Cl | 1756 | 19.000 | 51.000 | 76.000 | 136.000 | 74.000 | 107.000 | 28760.000 | 876.000 | Co | 1756 | 0.200 | 5.700 | 8.200 | 9.900 | 8.700 | 12.400 | 67.300 | 6.600 | Cr | 1756 | 4.200 | 27.800 | 45.000 | 72.600 | 48.000 | 70.100 | 2405.600 | 158.400 | Cs | 1756 | 0.400 | 2.700 | 3.700 | 4.300 | 3.900 | 5.400 | 22.400 | 2.300 | Cu | 1756 | 1.000 | 11.100 | 17.300 | 21.600 | 18.300 | 28.900 | 300.300 | 17.000 | Dy | 1756 | 0.200 | 2.700 | 3.200 | 3.500 | 3.500 | 4.200 | 15.200 | 1.400 | Er | 1756 | 0.100 | 1.600 | 1.900 | 2.100 | 2.100 | 2.500 | 10.200 | 0.900 | Eu | 1756 | 0.100 | 0.800 | 0.900 | 0.900 | 1.000 | 1.100 | 2.500 | 0.300 | F | 1756 | 121.000 | 395.000 | 505.000 | 542.000 | 523.000 | 659.000 | 2246.000 | 208.000 | Ga | 1756 | 0.500 | 10.400 | 12.300 | 13.600 | 14.800 | 17.200 | 26.200 | 4.800 | Gd | 1756 | 0.000 | 3.000 | 3.600 | 4.000 | 3.900 | 4.800 | 15.700 | 1.600 | Ge | 1756 | 0.100 | 1.000 | 1.100 | 1.100 | 1.100 | 1.300 | 2.900 | 0.300 | Hf | 1756 | 0.200 | 3.400 | 4.000 | 4.400 | 4.400 | 5.200 | 16.700 | 1.700 | Hg | 1756 | 1.000 | 32.000 | 42.300 | 44.000 | 43.000 | 52.000 | 136.500 | 384.000 | Ho | 1756 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 3.000 | 0.000 | I | 1756 | 0.100 | 0.400 | 0.600 | 0.700 | 0.500 | 0.800 | 68.200 | 1.700 | In | 1756 | 0.004 | 0.027 | 0.035 | 0.040 | 0.039 | 0.048 | 2.762 | 0.067 | K2O | 1756 | 0.060 | 1.790 | 2.290 | 2.560 | 2.660 | 3.280 | 6.170 | 1.030 | La | 1756 | 2.400 | 18.700 | 24.800 | 27.900 | 25.900 | 33.700 | 138.800 | 14.300 | Li | 1756 | 1.700 | 15.400 | 21.000 | 23.500 | 21.500 | 30.200 | 68.100 | 11.000 | Lu | 1756 | 0.020 | 0.240 | 0.290 | 0.320 | 0.310 | 0.390 | 1.570 | 0.140 | MgO | 1756 | 0.060 | 1.260 | 1.830 | 2.310 | 1.920 | 2.740 | 29.770 | 2.160 | Mn | 1756 | 59.000 | 402.000 | 511.000 | 568.000 | 523.000 | 668.000 | 4768.000 | 307.000 | Mo | 1756 | 0.100 | 0.470 | 0.700 | 0.890 | 0.660 | 1.010 | 16.700 | 0.930 | N | 1756 | 20.000 | 130.000 | 216.000 | 304.000 | 213.000 | 367.000 | 5653.000 | 338.000 | Na2O | 1756 | 0.090 | 0.980 | 1.470 | 1.810 | 1.580 | 2.650 | 6.240 | 1.050 | Nb | 1756 | 0.300 | 8.000 | 9.800 | 11.000 | 10.600 | 13.300 | 89.700 | 5.200 | Nd | 1756 | 1.400 | 16.400 | 20.400 | 22.600 | 22.000 | 27.400 | 90.200 | 10.000 | Ni | 1756 | 0.700 | 11.700 | 19.700 | 31.800 | 20.800 | 34.600 | 1294.300 | 71.000 | P | 1756 | 87.000 | 422.000 | 519.000 | 562.000 | 534.000 | 665.000 | 2042.000 | 226.000 | Pb | 1756 | 2.000 | 11.600 | 15.400 | 17.700 | 15.700 | 20.300 | 714.900 | 21.900 | Pr | 1756 | 0.400 | 4.300 | 5.500 | 6.100 | 5.900 | 7.500 | 26.500 | 2.800 | Rb | 1756 | 2.600 | 61.700 | 82.500 | 96.200 | 96.300 | 125.400 | 370.500 | 46.700 | S | 1756 | 24.000 | 102.000 | 191.000 | 377.000 | 179.000 | 320.000 | 42892.000 | 1470.000 | Sb | 1756 | 0.080 | 0.490 | 0.750 | 1.700 | 0.730 | 1.100 | 928.910 | 22.470 | Sc | 1756 | 1.000 | 6.100 | 8.400 | 9.600 | 9.000 | 12.100 | 54.100 | 4.900 | Se | 1756 | 0.010 | 0.080 | 0.140 | 0.210 | 0.130 | 0.240 | 2.890 | 0.250 | SiO2 | 1756 | 9.580 | 55.020 | 57.670 | 59.590 | 62.860 | 67.900 | 85.390 | 12.580 | Sm | 1756 | 0.300 | 3.200 | 3.900 | 4.300 | 4.300 | 5.200 | 16.200 | 1.800 | Sn | 1756 | 0.100 | 1.500 | 1.900 | 2.300 | 2.000 | 2.600 | 230.000 | 5.700 | Sr | 1756 | 17.000 | 143.000 | 204.000 | 240.000 | 205.000 | 287.000 | 3176.000 | 182.000 | Ta | 1756 | 0.050 | 0.480 | 0.680 | 0.810 | 0.760 | 1.030 | 6.920 | 0.500 | Tb | 1756 | 0.040 | 0.480 | 0.570 | 0.620 | 0.610 | 0.740 | 2.520 | 0.240 | TC | 1756 | 0.000 | 0.400 | 1.100 | 2.100 | 1.200 | 2.700 | 13.700 | 2.400 | Te | 1756 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | TFe2O3 | 1756 | 0.460 | 2.830 | 3.630 | 3.990 | 3.830 | 4.970 | 12.760 | 1.640 | Th | 1756 | 0.800 | 6.100 | 8.300 | 9.600 | 8.800 | 11.600 | 66.000 | 5.500 | Ti | 1756 | 194.000 | 1925.000 | 2466.000 | 2741.000 | 2671.000 | 3427.000 | 11773.000 | 1205.000 | Tl | 1756 | 0.060 | 0.350 | 0.470 | 0.530 | 0.510 | 0.680 | 2.060 | 0.240 | Tm | 1756 | 0.020 | 0.250 | 0.300 | 0.330 | 0.320 | 0.400 | 1.630 | 0.140 | U | 1756 | 0.400 | 1.700 | 2.300 | 2.500 | 2.300 | 3.000 | 16.700 | 1.200 | V | 1756 | 1.900 | 44.200 | 62.700 | 74.600 | 69.000 | 98.500 | 388.100 | 41.700 | W | 1756 | 0.110 | 0.890 | 1.330 | 1.870 | 1.330 | 1.840 | 125.800 | 4.650 | Y | 1756 | 1.400 | 14.400 | 17.600 | 19.100 | 18.700 | 22.600 | 93.900 | 7.700 | Yb | 1756 | 0.200 | 1.600 | 1.900 | 2.100 | 2.100 | 2.500 | 10.600 | 0.900 | Zn | 1756 | 9.000 | 39.000 | 51.800 | 57.700 | 53.600 | 72.300 | 1029.200 | 34.100 | Zr | 1756 | 12.000 | 99.000 | 122.000 | 134.000 | 129.000 | 163.000 | 659.000 | 61.000 |
|
Statistical table of geochemical parameters of some ore-forming elements in Kyrgyz
|
元素 | 吉尔吉斯 平均值(a) | 中国高寒山区 平均值(b) | 富集系数 (K=a/b) | 备注 | 元素 | 吉尔吉斯 平均值(a) | 中国高寒山区 平均值(b) | 富集系数 (K=a/b) | 备注 | Au | 2.70 | 1.30 | 2.08 | 富集 | TFe2O3 | 3.99 | 4.10 | 0.97 | 背景 | Sb | 1.70 | 0.86 | 1.98 | Mn | 568.00 | 589.00 | 0.96 | Hg | 44.00 | 23.00 | 1.91 | Co | 9.90 | 10.80 | 0.92 | Ba | 743.00 | 434.00 | 1.71 | Bi | 0.28 | 0.32 | 0.88 | 弱贫乏 | Sr | 240.00 | 159.00 | 1.51 | 弱富集 | Zn | 57.70 | 66.00 | 0.87 | Cr | 72.60 | 53.00 | 1.37 | Th | 9.60 | 11.40 | 0.84 | Mo | 0.89 | 0.65 | 1.37 | Y | 19.10 | 22.80 | 0.84 | Ni | 31.80 | 23.90 | 1.33 | Ti | 2741.00 | 3275.00 | 0.84 | Cd | 170.00 | 145.00 | 1.17 | Be | 1.80 | 2.20 | 0.82 | Ag | 80.00 | 69.00 | 1.16 | Nb | 11.00 | 13.60 | 0.81 | Cu | 21.60 | 19.20 | 1.13 | Sn | 2.30 | 2.90 | 0.79 | U | 2.50 | 2.30 | 1.09 | 背景 | Pb | 17.70 | 22.70 | 0.78 | V | 74.60 | 71.00 | 1.05 | La | 27.90 | 36.00 | 0.78 | P | 562.00 | 565.00 | 0.99 | Li | 23.50 | 36.00 | 0.65 | 贫乏 | W | 1.87 | 1.90 | 0.98 | Zr | 134.00 | 219.00 | 0.61 |
|
Enrichment coefficients of main ore-forming elements in Kyrgyz
|
元素 | 算术平均值 ( ) | 标准离差 (S0) | 变异系数 (Cv) | 备注 | 元素 | 算术平均值 ( ) | 标准离差 (S0) | 变异系数 (Cv) | 备注 | Sb | 1.70 | 22.47 | 13.22 | 高 | Ba | 743.00 | 476.00 | 0.64 | 弱 | Hg | 44.00 | 384.00 | 8.73 | Zn | 57.70 | 34.10 | 0.59 | Au | 2.70 | 19.40 | 7.19 | Th | 9.60 | 5.50 | 0.57 | Cd | 0.17 | 0.48 | 2.79 | 较高 | V | 74.60 | 41.70 | 0.56 | Ag | 0.08 | 0.22 | 2.69 | Mn | 568.00 | 307.00 | 0.54 | W | 1.87 | 4.65 | 2.49 | La | 27.90 | 14.30 | 0.51 | Sn | 2.30 | 5.70 | 2.48 | Be | 1.80 | 0.90 | 0.50 | Ni | 31.80 | 71.00 | 2.23 | U | 2.50 | 1.20 | 0.48 | Bi | 0.28 | 0.62 | 2.21 | Nb | 11.00 | 5.20 | 0.47 | Cr | 72.60 | 158.40 | 2.18 | Li | 23.50 | 11.00 | 0.47 | Pb | 17.70 | 21.90 | 1.24 | 一般 | Zr | 134.00 | 61.00 | 0.46 | Mo | 0.89 | 0.93 | 1.04 | Ti | 2741.00 | 1205.00 | 0.44 | Cu | 21.60 | 17.00 | 0.79 | 弱 | TFe2O3 | 3.99 | 1.64 | 0.41 | Sr | 240.00 | 182.00 | 0.76 | Y | 19.10 | 7.70 | 0.40 | Co | 9.90 | 6.60 | 0.67 | P | 562.00 | 226.00 | 0.40 |
|
Variation coefficients of major metallogenic elements in Kyrgyzstan
|
元素 | 富集系数 (K) | 变异系数 (Cv) | 成矿有利度 (Ma) | 排序 | 元素 | 富集系数 (K) | 变异系数 (Cv) | 成矿有利度 (Ma) | 排序 | Sb | 1.98 | 13.22 | 26.18 | 1 | Co | 0.92 | 0.67 | 0.62 | 16 | Hg | 1.91 | 8.73 | 16.67 | 2 | V | 1.05 | 0.56 | 0.59 | 17 | Au | 2.08 | 7.19 | 14.96 | 3 | U | 1.09 | 0.48 | 0.52 | 18 | Cd | 1.17 | 2.79 | 3.26 | 4 | Mn | 0.96 | 0.54 | 0.52 | 19 | Ag | 1.16 | 2.69 | 3.12 | 5 | Zn | 0.87 | 0.59 | 0.51 | 20 | Cr | 1.37 | 2.18 | 2.99 | 6 | Th | 0.84 | 0.57 | 0.48 | 21 | Ni | 1.33 | 2.23 | 2.97 | 7 | Be | 0.82 | 0.5 | 0.41 | 22 | W | 0.98 | 2.49 | 2.44 | 8 | La | 0.78 | 0.51 | 0.40 | 23 | Sn | 0.79 | 2.48 | 1.96 | 9 | TFe2O3 | 0.97 | 0.41 | 0.40 | 24 | Bi | 0.88 | 2.21 | 1.94 | 10 | P | 0.99 | 0.4 | 0.40 | 25 | Mo | 1.37 | 1.04 | 1.42 | 11 | Nb | 0.81 | 0.47 | 0.38 | 26 | Sr | 1.51 | 0.76 | 1.15 | 12 | Ti | 0.84 | 0.44 | 0.37 | 27 | Ba | 1.71 | 0.64 | 1.09 | 13 | Y | 0.84 | 0.4 | 0.34 | 28 | Pb | 0.78 | 1.24 | 0.97 | 14 | Li | 0.65 | 0.47 | 0.31 | 29 | Cu | 1.13 | 0.79 | 0.89 | 15 | Zr | 0.61 | 0.46 | 0.28 | 30 |
|
Statistical table of metallogenic advantage coefficient (Ma) of Kyrgyzstan
|
地球化学区 | Au显著度 | Cu显著度 | Pb显著度 | Zn显著度 | W显著度 | Sn显著度 | 综合显著度 | Ⅰ1-1 | 0.08 | 0.06 | 0.18 | 0.11 | 0.02 | 0.07 | 0.52 | Ⅰ2-1 | 0.20 | 0.17 | 0.40 | 0.19 | 0.06 | 0.02 | 1.04 | Ⅰ2-2 | 0.43 | 0.31 | 0.55 | 0.11 | 0.13 | 0.04 | 1.57 | Ⅱ1-1 | 0.51 | 0.14 | 0.12 | 0.17 | 0.11 | 0.02 | 1.07 | Ⅱ1-2 | 0.45 | 0.18 | 0.05 | 0.06 | 0.20 | 0.15 | 1.09 |
|
Sorting table of element anomaly significance statistics
|
|
Histogram of comprehensive significance
|
|
Prospector map of Kyrgyzstan
|
[1] |
王玮, 王学求, 张必敏, 等. 老挝国家尺度地球化学填图进展--以氟元素为例[J]. 桂林理工大学学报, 2019,39(2):335-340.
|
[1] |
Wang W, Wang X Q, Zhang B M, et al. Progress in national scale and geochemical mapping of Laos:Taking fluorine element as an example[J]. Journal of Guilin University of Technology, 2019,39(2):335-340.
|
[2] |
王斌, 孟广路, 马中平, 等. 吉尔吉斯斯坦矿产资源潜力及矿业投资建议[J]. 中国矿业, 2017,26(11):126-131.
|
[2] |
Wang B, Meng G L, Ma Z P, et al. Mineral resources potential and mining investment proposals in Kyrgyzstan[J]. China Mining Magazine, 2017,26(11):126-131.
|
[3] |
王斌, 陈博, 计文化, 等. 吉尔吉斯南天山Djanydjer蛇绿混杂岩地质特征及辉长岩年代学研究[J]. 地学前缘, 2016,23(3):198-209.
|
[3] |
Wang B, Chen B, Ji W H, et al. Geological features of Djanydjer ophiolitic mélange and chronology of gabbro in Kyrgyz, South Tianshan[J]. Earth Science Frontiers, 2016,23(3):198-209.
|
[4] |
王学求, 迟清华, 孙宏伟, 等. 荒漠戈壁区超低密度地球化学调查与评价——以东天山为例[J]. 新疆地质, 2001,19(3):200-206.
|
[4] |
Wang X Q, Chi Q H, Sun H W, et al. Wide-spaced geochemical survey in arid desert terrain:A case history from the eastern tianshan regions, northwestern China[J]. Xinjiang Geology, 2001,19(3):200-206.
|
[5] |
孟广路, 王斌, 范堡程, 等. 中国—吉尔吉斯天山成矿单元划分及其特征[J]. 地质通报, 2015,34(4):696-709.
|
[5] |
Meng G L, Wang B, Fan B C, et al. Classification and metallogenesis of metallogenic belts of the Tianshan Moun-tains in China and Kyrgyzstan[J]. Geological Bulletin of China, 2015,34(4):696-709.
|
[6] |
陈博, 马中平, 孟广路, 等. 吉尔吉斯天山晚古生代岩浆活动及相关成矿作用[J]. 地质学报, 2017,91(4):913-926.
|
[6] |
Chen B, Ma Z P, Meng G L, et al. Late paleozoic magmatic activities and related mineralization of Tianshan in Kyrgyzstan[J]. Acta Geologica Sinica, 2017,91(4):913-926.
|
[7] |
尼古诺罗夫. 吉尔吉斯斯坦矿产[M]. 比什凯克: 古雷纳尔出版社, 2009.
|
[7] |
Nikolaolov. Kyrgyz minerals[M]. Bishkek: Gurrenard, 2009.
|
[8] |
李恒海, 邱瑞照. 中亚五国矿产资源勘查开发指南[M]. 武汉: 中国地质大学出版社, 2010.
|
[8] |
Li H H, Qiu R Z. Guidelines for mineral resources exploration and development in five central Asian countries [M]. Wuhan: China University of Geosciences Press, 2010.
|
[9] |
张本仁. 秦巴区域地球化学文集[M]. 武汉: 中国地质大学出版社, 1990.
|
[9] |
Zhang B. Qinba regional geochemistry [M]. Wuhan: China University of Geosciences Press, 1990.
|
[10] |
王满仓, 王疆涛, 彭海练, 等. 大比例尺地球化学勘查技术在隐伏矿找矿实践中的应用——以内蒙古乌拉特后旗查干德尔斯大型钼矿为例[J]. 物探与化探, 2018,42(4):668-674.
|
[10] |
Wang M C, Wang J T, Peng H L, et al. The application of large-scale geochemical prospecting technique to the prospecting for concealed ore deposits: A case study of the Chagandeersi large molybdenum deposit in Urad Rear Banner, Inner Mongolia[J]. Geophysical and Geochemical Exploration, 2018,42(4):668-674.
|
[11] |
张勤山, 马楠, 郝亚青, 等. 综合化探方法在青海夏日哈木超大型铜镍矿床中的找矿应用[J]. 物探与化探, 2016,40(3):429-437.
|
[11] |
Zhang Q S, Ma N, Hao Y Q, et al. A study of integrated geochemical exploration method and its application to the Xiarihamu superlarge Cu-Ni deposit, Qinghai Province[J]. Geophysical and Geochemical Exploration, 2016,40(3):429-437.
|
[12] |
伦知颖, 程志忠, 严光生, 等. 中国不同景观区水系沉积物中39种元素的背景值[J]. 地学前缘, 2015,22(5):226-230.
|
[12] |
Lun Z Y, Cheng Z Z, Yan G S, et al. Concentrations of 39 elements in stream sediment landscape zones of China[J]. Earth Science Frontiers, 2015,22(5):226-230.
|
[13] |
蒙晓莲. 粤东地区地层含矿性探讨系列[J]. 有色金属矿产与勘探, 1994,3(3):151-157.
|
[13] |
Meng X L. A series of studies on the ore-bearing properties of strata in eastern Guangdong region[J]. Nonferrous Metals Mineral and Exploration, 1994,3(3):151-157.
|
[14] |
赵鹏大, 胡旺亮, 李紫金, 等. 矿床统计预测[M]. 北京: 地质出版社, 1983:10-50.
|
[14] |
Zhao P D, Hu W L, Li Z J, et al. Statistical prediction of mineral deposits [M]. Beijing: Geological Publishing House, 1983:10-50.
|
[1] |
ZHENG Xu-Ying, XU Ke-Wei, GU Lei, WANG Guo-Jian, LI Guang-Zhi, GUO Jia-Qi, ZOU Yu, BORJIGIN Tenger. Distribution of microorganisms in the typical geothermal field environment and its significance for geothermal exploration[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1127-1136. |
[2] |
SONG Wei-Fang, LIU Jian-Zhong, WU Pan, LI Jun-Hai, WANG Ze-Peng, YANG Cheng-Fu, TAN Qin-Ping, WANG Da-Fu. A successful application of the tectono-geochemistry weak information extraction method in the prospecting of Carlin-type gold deposits in southwestern Guizhou Province[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1338-1348. |
|
|
|
|