|
|
Multi-level division method of flow units for accurate permeability assessment of glutenite reservoirs:A case study of reservoir W53 of Paleogene Wenchang Formation in Lufeng oilfield |
SHI Lei( ), GUAN Yao, FENG Jin, GAO Hui, QIU Xin-Wei, QUE Xiao-Ming |
Research Institute,Shenzhen Branch of CNOOC Ltd.,Shenzhen 518000,China |
|
|
Abstract The glutenite reservoirs of the Paleogene Wenchang formation in the Lufeng oilfield in the eastern South China Sea are characterized by complex lithology,low porosity,and strongly heterogeneous pore structure.Since different types of reservoirs show greatly different seepage characteristics,traditional permeability models are difficult to meet the demand for petroleum production and development due to their low calculation precision.Flow units can effectively characterize the internal seepage characteristics of reservoirs.However,the division of flow units based only on flow unit indicators will lead to misclassification.Given the macro and micro hierarchical heterogeneity of reservoirs of the Wenchang Formation,this study establishes a multi-level division method of flow units by combining geological,logging,and core data.Specifically,the first-order flow units are determined according to sedimentary facies.Then the second-order flow units are determined according to the lithology identified by calibrating conventional logging based on core and imaging logging.Finally,the third-order flow units are determined using flow zone indicator (FZI) approaches combined with pore structure.In this manner,a three-level division method of flow units based on sedimentary microfacies-lithology-pore structure is formed.As indicated by application results,this method can effectively avoid the inaccurate classification of flow units and improve the accuracy of permeability calculation,thus having great significance for finding high-quality reservoirs and the efficient development of oil reservoirs.
|
Received: 26 February 2021
Published: 25 February 2022
|
|
|
|
|
|
The location and stratigraphic characteristics of Lufeng oilfield
|
沉积微相 | 伽马曲 线特征 | 岩性 | 岩心照片 | 孔隙度/% | 渗透率/(10-3 μm2) | 储层类型 | 流动单元 类别 | 水下分流河道 | ![]() | 含砾砂岩、粗砂岩、 细砂岩 | ![]() | 5.8~17.4 | 1.8~212.0 | 低孔低渗—中孔中渗 | Ⅰ | 滩坝 | ![]() | 细砂岩、粉砂岩 | ![]() | 4.0~15.7 | 0.25~6.0 | 低孔低渗—中孔低渗 | Ⅱ | 水下天然堤 | ![]() | 泥质粉砂岩、粉 砂质泥岩 | ![]() | 2.5~6.9 | <0.01 | 干层 | Ⅲ |
|
Sedimentary microfacies and division standard of the primary flow unit of W53 Reservoir
|
|
Different lithology characteristics of conventional logging and imaging logging of W53 Reservoir
|
|
Lithologic identification chart of W53 Reservoir
|
第一级次 | 第二级次 | 物性 | 沉积微相 | 流动单元类别 | 岩性 | 流动单元类别 | 孔隙度/% | 渗透率/(10-3 μm2) | 水下分流河道 | Ⅰ | 含砾砂岩 | Ⅰ1 | 10.1~17.4 | 11.9~212.5 | | | 粗砂岩 | Ⅰ2 | 5.8~14.8 | 1.8~38.1 | | | 细砂岩 | Ⅰ3 | 8.0~13.7 | 2.0~15.1 | 滩坝 | Ⅱ | 细砂岩 | Ⅱ1 | 4.0~13.3 | 0.3~6.0 | | | 粉砂岩 | Ⅱ2 | 4.6~15.7 | 0.04~3.9 |
|
Division standard of the secondary flow unit of W53 Reservoir
|
|
Relationship between porosity and permeability after secondary classification
|
|
Verification of reservoir type by mercury intrusion curve
|
|
Cumulative probability distribution of flow unit indicator
|
第一级次 | 第二级次 | 第三级次 | 流动单元总类型 (FZI) | 沉积微相 | 流动单元类别 | 岩性 | FZI | 流动单元类别 | FZI | 水下分 流河道 | Ⅰ | 含砾砂岩 | 3.02~5.20 | Ⅰ1 | 3.02~5.20 | 第一类(3.0~5.2) | 粗砂岩 | 2.31~2.90 | Ⅰ2 | 1.01~2.90 | 第二类(2.3~3.0) | 细砂岩 | 1.45~2.29 | Ⅰ3 | 第三类(1.5~2.3) | 滩坝 | Ⅱ | 细砂岩 | 1.01~1.95 | Ⅱ1 | 第四类(1.0~1.9) | 粉砂岩 | 0.31~0.93 | Ⅱ2 | 0.61~0.93 | 第五类(0.6~1.0) | 0.31~0.60 | 第六类(0.3~0.6) |
|
Division standard of the third flow unit of W53 Reservoir
|
|
Relationship between porosity and permeability after third classification
|
|
Stratigraphic flow unit profile (SFP) of W53 Reservoir in well X1
|
井名 | 孔隙度/ % | 试井渗透率/ (10-3 μm2) | 流动单元 总类型 | 钻杆地层测试* | 米采油指数/ [m3·MPa-1·d-1·m-1] | well-X1 | 13.4 | 17.2 | 第三类 | 自喷求产:油210.9 m3/d | 0.53 | well-2 | 17.0 | 186.0 | 第一类 | 自喷求产:油487.3 m3/d | 7.75 | well-8 | 17.9 | 67.5 | 第二类 | 自喷求产:油145.2 m3/d | 3.03 |
|
The comparison of flow unit type and DST results of W53 Reservoir
|
|
Comparison of calculated permeability and core permeability
|
[1] |
王月莲, 宋新民. 按流动单元建立测井储集层解释模型[J]. 石油勘探与开发, 2002,29(3):53-55.
|
[1] |
Wang Y L, Song X M. New method for well log interpretation by single fluid flow unit[J]. Petroleum Exploration and Development, 2002,29(3):53-55.
|
[2] |
董春梅, 林承焰, 赵海鹏, 等. 基于流动单元的测井储层参数解释模型[J]. 测井技术, 2006,30(5):425-428.
|
[2] |
Dong C M, Lin C Y, Zhao H P, et al. Model of well logging reservoir parameter interpretation based on flow units[J]. Well Logging Technology, 2006,30(5):425-428.
|
[3] |
Hearn C J, Ebanks Jr W J, Ranganath V. Geological factors influencing reservoir performance of the Hartzog Draw Field,Wyoming[J]. J. Petrol. Tech., 1984,36(6):1335-1344.
|
[4] |
李维禄, 高思宇, 张翼, 等. 末端扇—滨浅湖滩坝组合沉积机制与演化分布:以东濮凹陷卫城油田沙河街组四段为例[J]. 吉林大学学报:地球科学版, 2020,50(1):31-40.
|
[4] |
Li W L, Gao S Y, Zhang Y, et al. Sedimentary mechanism,evolution and distribution of terminal Fan to Beach-Bar in Shore-Shallow Lake Sediments:A case study of 4th member of Shahejie formation in Weicheng oildfield,Dongpu Depression[J]. Journal of Jilin University:Earth Science Edition, 2020,50(1):31-40.
|
[5] |
李娟, 孙松领. 储层流动单元研究现状、存在问题与发展趋势[J]. 特种油气藏, 2006,13(1):16-19.
|
[5] |
Li J, Sun S L. Current situation,problems and trend in the study of reservoir flow unit[J]. Special Oil and Gas Reservoirs, 2006,13(1):16-19.
|
[6] |
宋子齐, 陈荣环, 康立明, 等. 储层流动单元划分及描述的分析方法[J]. 西安石油大学学报:自然科学版, 2005,20(3):56-59.
|
[6] |
Song Z Q, Cheng R H, Kang L M, et al. Analytical method for the division and description of reservoir flowing unit[J]. Journal of Xi'an Shiyou University:Natural Science Edition, 2005,20(3):56-59.
|
[7] |
袁彩萍, 姚光庆, 徐思煌, 等. 油气储层流动单元研究综述[J]. 地质科技情报, 2006,25(4):21-24.
|
[7] |
Yuan C P, Yao G Q, Xu S H, et al. Review on fluid flow unit in oil &gas reservoirs[J]. Geological Science and Technology Information, 2006,25(4):21-24.
|
[8] |
魏博, 赵建斌, 魏彦巍, 等. 福山凹陷白莲流二段储层分类方法[J]. 吉林大学学报:地球科学版, 2020,50(6):1639-1647.
|
[8] |
Wei B, Zhao J B, Wei Y W, et al. Reservoir classification method in second member of Liushagang formation in Bailian area,Fushan Sag[J]. Journal of Jilin University:Earth Science Edition, 2020,50(6):1639-1647.
|
[9] |
Amaefule J, Altunbay M, Tiab D, et al. Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells[C]//Society of Petroleum Engineers, 1993.
|
[10] |
卢毓周, 徐磊, 魏斌, 等. 利用流动单元计算高含水油田渗透率[J]. 物探与化探, 2004,28(2):156-158.
|
[10] |
Lu Y Z, Xu L, Wei B, et al. The application of the reservoir flow unit to the calculation of permeability in highly water-bearing oilfields[J]. Geophysical and Geochemical Exploration, 2004,28(2):156-158.
|
[11] |
赵军, 江同文, 王焕增, 等. 基于流动单元的碳酸盐岩渗透率建模方法[J]. 天然气工业, 2007,27(2):46-48.
|
[11] |
Zhao J, Jiang T W, Wang H Z, et al. Flow unit based modeling of carbonate reservoir permeability[J]. Natural Gas Industry, 2007,27(2):46-48.
|
[12] |
张尚华, 程超, 李海龙, 等. 榆林气田二叠系山西组流动单元测井评价研究[J]. 天然气勘探与开发, 2010,33(1):34-37.
|
[12] |
Zhang S H, Cheng C, Li H L, et al. Well-Logging assessment of Permian Shanxi formation flow unit in Yulin Gasfield[J]. Natural Gas Exploration & Development, 2010,33(1):34-37.
|
[13] |
Ahrimankosh M, Kasiri N, Mousavi S M. Improved permeability prediction of a heterogeneous carbonate reservoir using artificial neural networks based on the flow zone index approach[J]. Liquid Fuels Technology, 2011,29(23):2494-2506.
|
[14] |
孙勤华, 李军, 张超谟, 等. 基于流动单元、ANFIS和多元统计分析建立高含水储层渗透率模型[J]. 测井技术, 2005,29(2):121-124.
|
[14] |
Sun Q H, Li J, Zhang C M, et al. High watercut reservoir permeability prediction by flow unit,ANFIS and Multi-statistics[J]. Well Logging Technology, 2005,29(2):121-124.
|
[15] |
孙致学, 姚军, 孙治雷, 等. 基于神经网络的聚类分析在储层流动单元划分中的应用[J]. 物探与化探, 2011,35(3):349-353.
|
[15] |
Sun Z X, Yao J, Sun Z L, et al. The application of cluster analysis based on neural network methods in identification reservoir flow unit[J]. Geological and Geochemical Exploration, 2011,35(3):349-353.
|
[16] |
靳彦欣, 林承焰, 赵丽, 等. 关于用FZI 划分流动单元的探讨[J]. 石油勘探与开发, 2004,31(5):130-131.
|
[16] |
Jin Y X, Lin C Y, Zhao L, et al. Discussions on FZI Methodology in Flow Unit Identification and Discrimination[J]. Petroleum Exploration and Development, 2004,31(5):130-131.
|
[17] |
高博禹, 彭仕宓, 龚宏杰, 等. 油气储层流动单元划分标准的探讨[J]. 中国矿业大学学报, 2005,34(1):82-85.
|
[17] |
Gao B Y, Peng S M, Gong H J, et al. Discussion on classification criteria of reservoir flow unit[J]. Journal of China University of Mining & Technology, 2005,34(1):82-85.
|
[18] |
高伟, 王允诚, 刘宏杰. 流动单元划分方法的讨论与研究[J]. 西南石油大学学报:自然科学版, 2009,31(6):37-40.
|
[18] |
Gao W, Wang Y C, Liu H J. The discussion and study on the division methods flow unit[J]. Journal of Southwest Petroleum University:Natural Science Edition, 2009,31(6):37-40.
|
[19] |
刘逸盛, 刘月田, 李长勇, 等. 厚层碳酸盐岩油藏流动单元划分——以中东MF油藏为例[J]. 西安石油大学学报:自然科学版, 2019,34(2):104-111.
|
[19] |
Liu Y S, Liu Y T, Li C Y, et al. Division of flow units in thick Carbonate reservoirs:taking MF reservoir in Middle East as an example[J]. Journal of Xi'an Shiyou University:Natural Science Edition, 2019,34(2):104-111.
|
[20] |
路研, 徐守余, 刘可禹, 等. 陆相滑塌浊积扇储层流动单元定量表征[J]. 中国石油大学学报:自然科学版, 2019,43(6):1-9.
|
[20] |
Lu Y, Xu S Y, Liu K Y, et al. Quantitative characterization of reservoir flow units ofbasin floor-fan turbidite[J]. Journal of China University of Petroleum:Edition of Natural Science, 2019,43(6):1-9.
|
[21] |
袁辉, 张宪国, 梁文锋, 等. 文昌13-1油田海相非均质地层流动单元识别方法[J]. 石油天然气学报:江汉石油学院学报, 2013,35(6):27-31.
|
[21] |
Yuan H, Zhang X G, Liang W F, et al. Flow unit recognition method of Heterogeneous Marine Strata in Wenchang 13-1 oilfield[J]. Journal of Oil and Gas Technology, 2013,35(6):27-31.
|
[22] |
李晨晖, 薛海涛, 卢双舫, 等. 潮控河口湾环境下的沉积相特征研究——以D-F油田M1油藏为例[J]. 西安石油大学学报:自然科学版, 2017,32(2):20-27.
|
[22] |
Li C H, Xue H T, Lu S F, et al. Study on characterisrics of sedimentary facies formed under Tide-dominated Estuary Environment:taking M1 reservoir in D-F Oilfield as an Example[J]. Journal of Xi’an Shiyou University:Natural Science Edition, 2017,32(2):20-27.
|
[23] |
王明健, 国景星, 袭著纲. 惠民凹陷唐庄地区沙河街组层序地层和沉积相[J]. 物探与化探, 2010,34(1):49-53.
|
[23] |
Wang M J, Guo J X, Xi Z G. Sequence stratigraphy and sedimentary facies of Shahejie formation in tangzhuang area of Huimin Depression[J]. Geophysical and Geochemical Exploration, 2010,34(1):49-53.
|
[24] |
吴红霞, 谢云, 邱以钢. FMI 成像测井在利津洼陷沉积相解释中的应用[J]. 新疆石油地质, 2008,29(6):765-767.
|
[24] |
Wu H X, Xie Y, Qiu Y G. Application of FMI imaging logging to interpretation of sedimentary facies in Lijin Sub-Sag[J]. Xinjiang Petroleum Geology, 2008,29(6):765-767.
|
[25] |
袁新涛, 彭仕宓, 林承焰, 等. 分流动单元精确求取储层渗透率方法[J]. 石油学报, 2005,26(6):78-81.
|
[25] |
Yuan X T, Peng S M, Lin C Y, et al. An interpretation method for permeability based on flow units and its applicability[J]. Acta Petrolei Sinica, 2005,26(6):78-81.
|
[26] |
宋宁, 刘振, 张剑风, 等. 基于流动单元分类的非均质砂岩储集层渗透率预测[J]. 科技导报, 2013,31(2):68-71.
|
[26] |
Song N, Liu Z, Zhang J F, et al. Permeability prediction of Heterogeneous sand reservoir based on flow units classification[J]. Science & Technology Review, 2013,31(2):68-71.
|
[1] |
ZHANG Jian-Wei, YANG Zhuo-Jing, WANG Xin-Jie, LI Sheng-Tao, ZHAO Yu-Jun. Design and application of the ultrasonic imaging logging system for deep carbonate geothermal reservoirs[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1500-1506. |
[2] |
ZHANG Ying, PAN Bao-zhi. THE APPLICATION OF SVM AND FMI TO THE LITHOLOGIC IDENTIFICATION OF VOLCANIC ROCKS[J]. Geophysical and Geochemical Exploration, 2011, 35(5): 634-638,642. |
|
|
|
|