|
|
Experimental measurement and analysis of the acoustic-electrical anisotropy of dolomites |
TANG Jun1( ), LIU Qin-Yuan1( ), LAI Qiang2, WU Yu-Yu2, XU Wei1 |
1. College of Geophysics and Petroleum Resources,Yangtze University,Wuhan 430100,China 2. Exploration and Development Research Institute,PetroChina Southwest Oil and Gas Field Company,Chengdu 610041,China |
|
|
Abstract The dolomites in the Dengying Formation in the Gaoshi-Moxi area,Sichuan Basin have strong anisotropy,causing great differences in acoustic and resistivity curves measured at horizontal and vertical wells and unclear interpretation of logging response rules,thus affecting the application performance of the horizontal well technique in actual reservoirs.With the dolomite outcrops in the Gaoshi-Moxi area as a case study,this study designed and conducted the synchronous measurement experiments of resistivity and acoustic waves of cores in different directions under high-temperature and high-pressure conditions and analyzed the experimental relationship between acoustic and electrical anisotropy coefficients.The experimental results show that there was a positive linear correlation between the two coefficients at 60℃ and 60 MPa.Specifically,with an increase in water saturation,the compressional wave velocity increased,the resistivity decreased,and acoustic and electrical anisotropy coefficients increased.This result provides an experimental basis for the correlation analysis of acoustic-electrical anisotropy and the correction of the differences in the acoustic waves and resistivity.
|
Received: 25 November 2021
Published: 03 January 2023
|
|
Corresponding Authors:
LIU Qin-Yuan
E-mail: tangjun@yangtzeu.edu.cn;774965375@qq.com
|
|
|
|
|
Schematic diagram of horizontal well logging for anisotropic reservoirs
|
|
Schematic diagram of core x direction and z direction
|
|
Schematic diagram of acoustic pulse transmission measurement
|
|
Basic measurement principle diagram of resistivity measuring instrument
|
|
Schematic diagram of experimental instrument connection
|
岩心编号 | 干重/g | 长度/mm | 宽度/mm | 高度/mm | 饱和质量/g | 孔隙度/% | 密度/(g·cm-3) | 1 | 358.974 | 49.94 | 50.92 | 50.62 | 361.011 | 1.575 | 2.789 | 2 | 335.484 | 48.68 | 49.72 | 49.42 | 336.666 | 0.983 | 2.805 | 3 | 336.805 | 49.42 | 49.32 | 49.76 | 340.945 | 3.396 | 2.777 | 4 | 329.733 | 49.18 | 49.12 | 49.36 | 333.876 | 3.457 | 2.765 | 5 | 332.871 | 48.98 | 49.26 | 49.64 | 336.142 | 2.717 | 2.779 | 6 | 335.707 | 49.44 | 49.5 | 49.34 | 338.946 | 2.669 | 2.780 | 7 | 348.777 | 49.01 | 49.52 | 49.18 | 335.363 | 3.057 | 2.779 | 8 | 331.697 | 49.85 | 49.52 | 49.8 | 344.434 | 3.942 | 2.767 |
|
Statistics of measurement results of core physical parameters
|
|
x-direction acoustic waveform diagram of No.2 core
|
|
z-direction acoustic waveform diagram of No.2 core
|
|
Comparison of acoustic waveform of No.2 core
|
岩心编号 | 长度/mm | 宽度/mm | 高度/mm | 纵波速度/(m·s-1) | 横波速度/(m·s-1) | 纵波各向 异性系数 | 横波各向 异性系数 | x | z | x | z | 1 | 49.94 | 50.92 | 50.62 | 7640 | 7412.9 | 4410.5 | 4279.9 | 1.03 | 1.03 | 2 | 48.68 | 49.72 | 49.42 | 7280.8 | 7062.1 | 4203.6 | 4077.4 | 1.03 | 1.03 | 3 | 49.42 | 49.32 | 49.76 | 7374.6 | 7170.7 | 4257.8 | 4140.1 | 1.036 | 1.036 | 4 | 49.18 | 49.12 | 49.36 | 7143.9 | 6915 | 4124.6 | 3992.5 | 1.034 | 1.034 | 5 | 48.98 | 49.26 | 49.64 | 7339.6 | 7119.7 | 4237.6 | 4110.6 | 1.031 | 1.031 | 6 | 49.44 | 49.5 | 49.34 | 7238 | 7009.8 | 4465.4 | 4256.1 | 1.032 | 1.032 | 7 | 49.01 | 49.52 | 49.18 | 7516.8 | 7260.1 | 4339.9 | 4191.7 | 1.035 | 1.035 | 8 | 49.85 | 49.52 | 49.8 | 6664.5 | 6415 | 3847.9 | 3703.8 | 1.038 | 1.038 |
|
Statistical table of anisotropy coefficient of dolomite
|
岩心编号 | 长度/mm | 宽度/mm | 高度/mm | 电阻/kΩ | 电阻率/(Ω·m) | 电各向异性 系数 | x | z | x | z | 1 | 49.94 | 50.92 | 50.62 | 268.14 | 487.18 | 13564 | 24473 | 1.343 | 2 | 48.68 | 49.72 | 49.42 | 280.71 | 438.88 | 14169 | 21494 | 1.231 | 3 | 49.42 | 49.32 | 49.76 | 71.43 | 211.84 | 3844.6 | 10376 | 1.642 | 4 | 49.18 | 49.12 | 49.36 | 87.53 | 197.94 | 4368.3 | 10015 | 1.514 | 5 | 48.98 | 49.26 | 49.64 | 26.801 | 51.99 | 1337.9 | 2526.9 | 1.374 | 6 | 49.44 | 49.5 | 49.34 | 52.55 | 103.92 | 2595.9 | 5154.4 | 1.409 | 7 | 49.01 | 49.52 | 49.18 | 122.35 | 289.72 | 6079.8 | 14297 | 1.533 | 8 | 49.85 | 49.52 | 49.8 | 20.834 | 61.638 | 1032.7 | 3061.5 | 1.721 |
|
Statistical table of electrical anisotropy coefficient of dolomite core
|
|
Relationship between acoustic velocity anisotropy coefficient and resistivity anisotropy coefficient
|
|
Comparison chart of x-direction acoustic waveform of No.1 core with different water saturation
|
岩心编号 | 含水饱和度/% | 电阻率/Ω·m | 纵波速度/(m·s-1) | 声各向 异性系数 | 电各向 异性系数 | x | z | x | z | 1 | 0 | 32586.66 | 36312.88 | 7355.3 | 7302.9 | 1.007 | 1.055 | 49.11 | 20391.06 | 31959.46 | 7462.2 | 7314.9 | 1.020 | 1.251 | 100 | 13564 | 24473 | 7640 | 7412.9 | 1.030 | 1.343 | 3 | 0 | 27639.016 | 41073.17 | 7200.5 | 7150.4 | 1.007 | 1.219 | 69.97 | 10086.34 | 24320.26 | 7355.3 | 7166.4 | 1.026 | 1.552 | 100 | 3844.6 | 10376 | 7374.6 | 7170.7 | 1.028 | 1.642 | 6 | 0 | 13183.413 | 17429.98 | 7004 | 6956.6 | 1.006 | 1.159 | 28.99 | 7859.387 | 9319.927 | 7200.5 | 6998.1 | 1.028 | 1.263 | 100 | 2595.9 | 5154.4 | 7238 | 7009.8 | 1.032 | 1.409 |
|
Statistical table of acoustic and electrical anisotropy coefficients of 3 cores with different water saturation
|
[1] |
金军斌, 欧彪, 张杜杰, 等. 深部裂缝性碳酸盐岩储层井壁稳定技术研究现状及展望[J]. 长江大学学报:自然科学版, 2021, 18(6):47-54.
|
[1] |
Jin J B, Ou B, Zhang D J, et al. Research status and prospects of borehole stabilization technology for deep fractured carbonate reservoirs[J]. Journal of Yangtze University:Natural Science Edition, 2021, 18(6):47-54.
|
[2] |
贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2):129-135.
|
[2] |
Jia C Z, Zheng M, Zhang Y F. China's unconventional oil and gas resources and prospects for exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2):129-135.
|
[3] |
周灿灿, 王昌学. 水平井测井解释技术综述[J]. 地球物理学进展, 2006, 21(1):152-160.
|
[3] |
Zhou C C, Wang C X. Technology review on the log interpretation of horizontal well[J]. Progress in Geophysics, 2006, 21(1):152-160.
|
[4] |
程庆昭, 魏修平, 宿伟. 水平井测井解释评价技术综述[J]. 非常规油气, 2016, 3(2):93-98.
|
[4] |
Cheng Q Z, Wei X P, Su W. Overview of horizontal well logging interpretation and evaluation technology[J]. Unconventional Oil & Gas, 2016, 3(2):93-98.
|
[5] |
Klein J D. Induction log anisotropy correction[J]. The Log Analyst, 1993, 34(2):18-27.
|
[6] |
徐亦鸣, 黄中玉, 刘路佳. 各向异性介质纵波速度分析[J]. 石油物探, 2004, 43(5):438-440,449.
|
[6] |
Xu Y M, Huang Z Y, Liu L J. Analysis of P-wave velocity in anisotropic media[J]. Petroleum Geophysics, 2004, 43(5):438-440,449.
|
[7] |
Moran J H, Gianzero S. Effects of formation anisotropy on resistivity-logging measurements[J]. Geophysics, 1979, 44(7):1266-1286.
|
[8] |
伍文杰. 各向异性岩样声学特性理论与实验研究[D]. 青岛: 中国石油大学(华东), 2019.
|
[8] |
Wu W J. Theoretical and experimental study on acoustic characteristics of anisotropic rock samples[D]. Qingdao: China University of Petroleum (Huadong), 2019.
|
[9] |
孙晶波. 方位各向异性介质纵波速度分析方法研究与应用[D]. 青岛: 中国石油大学(华东), 2007.
|
[9] |
Sun J B. Research and application of P-wave velocity analysis method in azimuthally anisotropic media[D]. Qingdao: China University of Petroleum (Huadong), 2007.
|
[10] |
蔡琳, 张承森, 刘瑞林, 等. 碳酸盐岩地层水平井电阻率各向异性校正方法研究及应用[J]. 石油天然气学报, 2014, 36(12):122-126.
|
[10] |
Cai L, Zhang C S, Liu R L, et al. Research and application of resistivity anisotropy correction method for horizontal wells in carbonate formation[J]. Journal of Petroleum and Natural Gas, 2014, 36(12):122-126.
|
[11] |
Schlumberger C, Schlumberger M, Leonardon G. Some observations concerning electrical measurements in anisotropic media and their interpretation[J]. Transaction of the American Institute of Mining and Metallurgical Engineers, 1933:367-391.
|
[12] |
周新鹏. 岩石声电参数测量方法与实验研究[D]. 北京: 中国地质大学(北京), 2008.
|
[12] |
Zhou X P. Measurement method and experimental study of acoustic and electrical parameters of rocks[D]. Beijing: China University of Geosciences (Beijing), 2008.
|
[13] |
杨华, 李士祥, 刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34(1):1-11.
|
[13] |
Yang H, Li S X, Liu X Y. Tight oil in Ordos Basin,shale oil characteristics and resource potential[J]. Acta Petrolei Sinica, 2013, 34(1):1-11.
|
[14] |
覃世银, 管志宁, 王昌学, 等. 层状各向异性地层的识别与评价[J]. 测井技术, 2003, 27(3):194-197.
|
[14] |
Qin S Y, Guan Z N, Wang C X, et al. Identification and evaluation of layered anisotropic strata[J]. Logging Technology, 2003, 27(3):194-197.
|
[15] |
衡帅, 杨春和, 曾义金, 等. 页岩水力压裂裂缝形态的试验研究[J]. 岩土工程学报, 2014, 36(7):1243-1251.
|
[15] |
Heng S, Yang C H, Zeng Y J, et al. Experimental study on fracture morphology of shale hydraulic fracturing[J]. Journal of Geotechnical Engineering, 2014, 36(7):1243-1251.
|
[16] |
牟磊育, 赵仲和, 张伟, 等. 用INGLADA与GEIGER方法实现近震精定位[J]. 中国地震, 2006, 22(3):294-302.
|
[16] |
Mou L Y, Zhao Z H, Zhang W, et al. Using INGLADA and GEIGER methods to realize precise location of near earthquakes[J]. China Earthquake, 2006, 22(3):294-302.
|
[17] |
史明义, 金衍, 陈勉, 等. 水平井水力裂缝延伸物理模拟试验研究[J]. 石油天然气学报, 2008, 30(3):130-133.
|
[17] |
Shi M Y, Jin Y, Chen M, et al. Experimental study on physical simulation of hydraulic fracture extension in horizontal wells[J]. Journal of Petroleum and Natural Gas, 2008, 30(3):130-133.
|
[18] |
罗少成, 汪中浩, 唐冰娥, 等. 水平井地层电阻率各向异性校正方法研究[J]. 测井技术, 2009, 33(2):126-129.
|
[18] |
Luo S C, Wang Z H, Tang B E, et al. Study on correction method of formation resistivity anisotropy in horizontal wells[J]. Logging Technology, 2009, 33(2):126-129.
|
[19] |
赵益忠, 曲连忠, 王幸尊, 等. 不同岩性地层水力压裂裂缝扩展规律的模拟实验[J]. 中国石油大学学报:自然科学版, 2007, 31(3):63-66.
|
[19] |
Zhao Y Z, Qu L Z, Wang X Z, et al. Simulation experiment of fracture propagation law of hydraulic fracturing in different lithology strata[J]. Journal of China University of Petroleum:Natural Science Edition, 2007, 31(3):63-66.
|
[20] |
张旭, 蒋廷学, 贾长贵, 等. 页岩气储层水力压裂物理模拟试验研究[J]. 石油钻探技术, 2013, 41(2):70-74.
|
[20] |
Zhang X, Jiang T X, Jia C G, et al. Experimental study on physical simulation of hydraulic fracturing in shale gas reservoir[J]. Oil Drilling Technology, 2013, 41(2):70-74.
|
[21] |
史謌, 何涛, 仵岳奇, 等. 用正演数值计算方法开展双侧向测井对裂缝的响应研究[J]. 地球物理学报, 2004, 47(2):359-363.
|
[21] |
Shi G, He T, Qi Y Q, et al. Study on the response of dual laterolog to fractures by forward numerical calculation method[J]. Chinese Journal of Geophysics, 2004, 47(2):359-363.
|
[22] |
赵江青, 王成龙, 叶青竹. 岩石各向异性在水平井测井解释中的应用[J]. 测井技术, 1998, 22(1):36-41.
|
[22] |
Zhao J Q, Wang C L, Ye Q Z. Application of rock anisotropy in horizontal well logging interpretation[J]. Logging Technology, 1998, 22(1):36-41.
|
[23] |
滕吉文, 张中杰, 王爱武, 等. 弹性介质各向异性研究沿革、现状与问题[J]. 地球物理学进展, 1992, 7(4):14-28.
|
[23] |
Teng J W, Zhang Z J, Wang A W, et al. The study of anisotropy in elastic medium:Evolution,present situation and questions[J]. Progress in Geophysics, 1992, 7(4):14-28.
|
[24] |
滕吉文, 张永谦, 阮小敏, 等. 地球内部壳幔介质地震各向异性与动力学响应[J]. 地球物理学报, 2012, 55(11):3648-3670.
|
[24] |
Teng J W, Zhang Y Q, Ruan X M, et al. Seismic anisotropy and dynamic response of crust-mantle medium in the earth[J]. Chinese Journal of Geophysics, 2012, 55(11):3648-3670.
|
[25] |
覃臻, 汪中浩, 后敏, 等. 水平井地层电阻率各向异性模拟及实例分析[J]. 国外测井技术, 2011, 182(2):9-12.
|
[25] |
Qin Z, Wang Z H, Hou M, et al. Anisotropy simulation and case analysis of formation resistivity in horizontal wells[J]. Foreign Logging Technology, 2011, 182(2):9-12.
|
[26] |
于萍, 张瑜, 闫建萍, 等. 四川盆地龙马溪组页岩吸水特征及3种页岩孔隙度分析方法对比[J]. 天然气地球科学, 2020, 31(7):1016-1027.
|
[26] |
Yu P, Zhang Y, Yan J P, et al. Water absorption characteristics of shale in Longmaxi Formation of Sichuan Basin and comparison of three shale porosity analysis methods[J]. Natural Gas Geoscience, 2020, 31(7):1016- 1027.
|
[27] |
田瀚, 冯庆付, 辛勇光, 等. 中坝地区雷口坡组白云岩储层测井岩石物理实验分析[J]. 测井技术, 2020, 44(5):438-442.
|
[27] |
Tian H, Feng Q F, Xin Y G, et al. Experimental analysis of logging petrophysics of dolomite reservoir of Leikoupo Formation in Zhongba area[J]. Logging Technology, 2020, 44(5):438-442.
|
[28] |
曾鑫, 孙建孟, 崔瑞康, 等. 孔隙含气压力对不同孔隙结构砂岩声学属性的影响[J]. 科学技术与工程, 2020, 20(6):2192-2201.
|
[28] |
Zeng X, Sun J M, Cui R K, et al. Influence of pore gas pressure on acoustic properties of sandstone with different pore structures[J]. Science,Technology and Engineering, 2020, 20(6):2192-2201.
|
[29] |
李闯, 赵建国, 王宏斌, 等. 致密碳酸盐岩跨频段岩石物理实验及频散分析[J]. 地球物理学报, 2020, 63(2):627-637.
|
[29] |
Li C, Zhao J G, Wang H B, et al. Cross-frequency petrophysical experiment and dispersion analysis of tight carbonate rocks[J]. Chinese Journal of Geophysics, 2020, 63(2):627-637.
|
[30] |
李潮流, 袁超, 李霞, 等. 致密砂岩电学各向异性测井评价与声电各向异性一致性分析[J]. 石油勘探与开发, 2020, 47(2):427-434.
|
[30] |
Li C L, Yuan C, Li X, et al. Electrical anisotropy logging evaluation and acoustic-electrical anisotropy consistency analysis of tight sandstone[J]. Petroleum Exploration and Development, 2020, 47(2):427-434.
|
[31] |
原宏壮. 各向异性介质岩石物理模型及应用研究[D]. 青岛: 中国石油大学(华东), 2007.
|
[31] |
Yuan H Z. Study on petrophysical model and application of anisotropic medium[D]. Qingdao: China University of Petroleum (Huadong), 2007.
|
[1] |
YOU Xi-Ran, ZHANG Ji-Feng, SHI Yu. Artificial neural network-based transient electromagnetic imaging[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1206-1214. |
[2] |
HE Sheng, WANG Wan-Ping, DONG Gao-Feng, NAN Xiu-Jia, WEI Feng-Feng, BAI Yong-Yong. Application of the opposing-coils transient electromagnetic method in urban geological surveys[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1379-1386. |
|
|
|
|