|
|
Geochemical characteristics of major elements in the black soil profiles of the Hailun area, Heilongjiang Province and their implications for provenance |
SONG Yun-Hong1,2,3( ), YANG Feng-Chao1( ), LIU Kai1,2,3, DAI Hui-Min1,2,3, XU Jiang1,2,3, HAN Xiao-Meng1,2,3 |
1. Shenyang Center of China Geological Survey, Shenyang 110034, China 2. Key Laboratory for Evolution and Ecological Effect in Black Land, Ministry of Natural Resources, Shenyang 110034, China 3. Key Laboratory for Evolution and Ecological Effect in Black Land of Liaoning Province, Shenyang 110034, China |
|
|
Abstract The geochemical characteristics of the major elements in the black soil profiles and their ratios are closely related to the formation and development of the soil. They reflect the degree of the formation and development of soil as well as the environmental changes in the provenance areas. Moreover, they are important geological records of environmental evolution and climate change in the Songnen Plain. To explore the origin, provenance, and chemical weathering intensity of the typical black soil in northeast China, this study analyzed the major elements of nine representative black soil profiles in the Hailun area and then compared these elements with the element geochemical characteristics of typical aeolian deposits. The results are as follows. ①The sum of the content of the major elements (SiO2, Al2O3, and Fe2O3) and the UCC standardized curve of the Hailun black soil profiles were highly similar to those of typical aeolian deposits, indicating that the typical black soil in Hailun is aeolian; ②The average chemical index of alteration (CIA) was 63.97. The CIA-Na/K diagrams all indicated a low degree of chemical weathering. By comparison with the weathering intensity of typical aeolian deposits, the weathering intensity of the soil was in the order of loess in Huangshan, Harbin > loess in Xiashu, Zhenjiang > red clay in Xifeng > black soil in Hailun≈loess in Luochuan; ③The black soil at a depth of 0~30 cm has higher w(SiO2)/w(TiO2) and w(SiO2)/w(Al2O3) ratios than the black soil below 30 cm, indicating that the late typical black soil in Hailun has a coarser grain size and higher quartz content. The geochemical characteristics of the major elements indicate that the typical black soil in the surface layer and the deep layer may not have the same climate, environment, and provenance conditions, which may change at a depth of approximately 30 cm.
|
Received: 27 January 2022
Published: 03 January 2023
|
|
Corresponding Authors:
YANG Feng-Chao
E-mail: yunhong408@163.com;yangfc123@163.com
|
|
|
|
|
The sampling position of typical black soil profile in Hailun area
|
剖面号 | 参数 | SiO2 | Al2O3 | Fe2O3 | K2O | Na2O | MgO | CaO | TiO2 | CIA | PM1901 n=7 | 最小值 | 65.51 | 13.53 | 4.57 | 2.51 | 1.71 | 1.22 | 1.25 | 0.77 | 60.80 | 最大值 | 66.51 | 15.21 | 5.41 | 2.61 | 1.79 | 1.54 | 1.52 | 0.81 | 65.03 | 平均值 | 66.05 | 14.67 | 5.10 | 2.56 | 1.75 | 1.40 | 1.33 | 0.80 | 63.62 | PM1902 n=7 | 最小值 | 65.51 | 13.83 | 4.69 | 2.5 | 1.74 | 1.24 | 1.28 | 0.77 | 61.68 | 最大值 | 66.32 | 15.26 | 5.50 | 2.6 | 1.84 | 1.57 | 1.44 | 0.80 | 64.77 | 平均值 | 65.98 | 14.77 | 5.21 | 2.54 | 1.78 | 1.44 | 1.35 | 0.80 | 63.57 | PM1903 n=10 | 最小值 | 65.34 | 13.96 | 4.72 | 2.49 | 1.74 | 1.29 | 1.30 | 0.77 | 61.78 | 最大值 | 66.62 | 15.14 | 5.40 | 2.73 | 1.96 | 1.57 | 1.47 | 0.80 | 73.05 | 平均值 | 65.75 | 14.83 | 5.15 | 2.59 | 1.83 | 1.46 | 1.35 | 0.79 | 66.42 | PM1904 n=7 | 最小值 | 65.77 | 13.71 | 4.53 | 2.52 | 1.80 | 1.23 | 1.27 | 0.77 | 60.67 | 最大值 | 66.61 | 15.01 | 5.38 | 2.6 | 1.88 | 1.49 | 1.53 | 0.80 | 63.83 | 平均值 | 66.19 | 14.46 | 5.01 | 2.54 | 1.83 | 1.37 | 1.37 | 0.79 | 62.72 | PM1907 n=11 | 最小值 | 65.52 | 13.78 | 4.53 | 2.51 | 1.70 | 1.24 | 1.19 | 0.78 | 61.69 | 最大值 | 66.17 | 15.09 | 5.50 | 2.68 | 1.81 | 1.48 | 1.42 | 0.81 | 65.31 | 平均值 | 65.89 | 14.72 | 5.17 | 2.55 | 1.75 | 1.39 | 1.28 | 0.80 | 63.94 | PM1908 n=10 | 最小值 | 65.56 | 14.02 | 4.46 | 2.54 | 1.69 | 1.20 | 1.21 | 0.78 | 62.17 | 最大值 | 66.27 | 15.07 | 5.44 | 2.62 | 1.91 | 1.58 | 1.37 | 0.81 | 64.56 | 平均值 | 65.93 | 14.69 | 5.08 | 2.58 | 1.80 | 1.42 | 1.28 | 0.80 | 63.61 | PM1909 n=9 | 最小值 | 65.43 | 13.42 | 4.62 | 2.47 | 1.59 | 1.23 | 1.24 | 0.76 | 60.55 | 最大值 | 66.69 | 14.73 | 5.26 | 2.66 | 1.97 | 1.35 | 1.64 | 0.81 | 63.94 | 平均值 | 66.14 | 14.18 | 4.92 | 2.59 | 1.77 | 1.28 | 1.43 | 0.79 | 62.31 | PM1910 n=10 | 最小值 | 65.67 | 13.67 | 4.64 | 2.53 | 1.71 | 1.24 | 1.17 | 0.78 | 60.47 | 最大值 | 66.87 | 15.07 | 5.38 | 2.61 | 1.95 | 1.49 | 1.47 | 0.82 | 65.29 | 平均值 | 66.24 | 14.57 | 5.12 | 2.58 | 1.84 | 1.39 | 1.24 | 0.80 | 63.40 | PM1921 n=10 | 最小值 | 65.9 | 13.25 | 4.29 | 2.52 | 1.75 | 1.15 | 1.15 | 0.77 | 60.58 | 最大值 | 67.87 | 14.86 | 5.39 | 2.71 | 2.01 | 1.57 | 1.39 | 0.82 | 63.61 | 平均值 | 66.58 | 14.38 | 5.07 | 2.61 | 1.93 | 1.41 | 1.27 | 0.80 | 62.44 | 荒山黄土 n=62 | 最小值 | 55.74 | 16.98 | 3.03 | 2.75 | 1.51 | 1.56 | 0.72 | | | 最大值 | 66.70 | 21.97 | 4.85 | 3.19 | 2.45 | 2.07 | 1.01 | | | 平均值 | 60.85 | 19.47 | 4.22 | 3.00 | 1.84 | 1.88 | 0.87 | | 74.66 | 洛川黄土 n=12 | 平均值 | 66.4 | 14.2 | 4.81 | 3.01 | 1.66 | 2.29 | 1.02 | | 63.73 | 镇江下蜀 土n=54 | 平均值 | 68.07 | 13.32 | 5.3 | 2.35 | 0.92 | 1.61 | 1 | | 70.45 | 西峰红黏 土n=5 | 平均值 | 63.75 | 15.05 | 5.28 | 3 | 1.16 | 2.89 | 0.9 | | 69.11 | 上陆壳 (UCC) | 平均值 | 66.00 | 15.20 | 5.00 | 3.40 | 3.90 | 2.20 | 4.20 | | 47.92 |
|
Element contents of Hailun black soil profile and other aeolian dust deposits%
|
|
Distribution characteristics of major elements in Hailun black soil profile
|
指标 | SiO2 | Al2O3 | TFe2O3 | MgO | CaO | Na2O | K2O | SiO2 | 1 | | | | | | | Al2O3 | -0.865** | 1 | | | | | | TFe2O3 | -0.894** | 0.984** | 1 | | | | | MgO | -0.917** | 0.949** | 0.973** | 1 | | | | CaO | 0.578** | -0.888** | -0.823** | -0.747** | 1 | | | Na2O | -0.654** | 0.398 | 0.412** | 0.583** | -0.132** | 1 | | K2O | -0.638** | 0.479 | 0.546 | 0.667 | -0.111** | 0.755 | 1 |
|
Correlation coefficient of element contents in Hailun Black soil profile
|
|
UCC-normalized pattern of elements of the Hailun black soil parent material and other aeolian dust deposits
|
|
Scatter diagram of CIA—w(Na)/w(K) molar ratio of the Hailun Black soil parent material(a), and variation of w(Na)/w(K)(b) and CIA(c) in Hailun area
|
|
w(TiO2)/w(Al2O3) versus w(SiO2)/w(Al2O3) (a)and w(TiO2)/w(Al2O3) versus w(SiO2)/w(TiO2) (b)plots for the Hailun Black soil parent material
|
[1] |
Powlson D S, Gregory P J, Whalley W R, et al. Soil management in relation to sustainable agriculture and ecosystem services[J]. Food Policy, 2011, 36:72-87.
|
[2] |
宋运红, 刘凯, 戴慧敏, 等. 东北松辽平原35年来耕地土壤全氮时空变化最新报道[J], 中国地质, 2021, 48(1):332-333.
|
[2] |
Song Y H, Liu K, Dai H M, et al. Spatio-temporal variation of total N content in farmland soil of Songliao Plain in Northeast China during the past 35 years[J]. Geology in China, 2021, 48(1):332-333.
|
[3] |
Song Y H, Dai H M, Yang F C, et al. A preliminary study on soil degradation and nutrient imbalance of typical black soil in Northeast China[C]// Proceedings of the 6th Academic Conference of Geology Resource Management and Sustainable Development, 2018:328-335.
|
[4] |
宋运红, 刘凯, 戴慧敏, 等. 松嫩平原东部典型黑土剖面孢粉组合及其时代和古气候意义[J]. 地质通报, 2020a, https://kns.cnki.net/kcms/detail/11.4648.P.20201015.0930.002.html.
|
[4] |
Song Y H, Liu K, Dai H M, et al. Palynological Assemblages of typical black soil profile in the eastern Songliao Plain and their Age and Paleoclimatic Significances[J]. Geological Bulletin of China, 2020a, https://kns.cnki.net/kcms/detail/11.4648.P.20201015.0930.002.html.
|
[5] |
宋运红, 刘凯, 戴慧敏, 等. 东北松辽平原典型黑土—古土壤剖面AMS14C年龄首次报道[J]. 中国地质, 2020, 47(6):1926-1927.
|
[5] |
Song Y H, Liu K, Dai H M, et al. The first reported of the AMS14C age of typical black soil mollisol—Paleosol profile of Songliao Plain[J]. Geology in China, 2020, 47(6):1926-1927.
|
[6] |
张新荣, 平帅飞, 焦洁钰, 等. 松嫩平原南缘现代沉积物磁化率、粒度、色度特征及古气候环境意义[J]. 吉林大学学报:地球科学版, 2020, 50(2):465-479.
|
[6] |
Zhang X R, Ping S F, Jiao J Y, et al. Characteristics of magentic susceptibility,grain size and chromaticity of modern sedimentsin the southern margin of Songnen Plain and their paleoclimate environment significance[J]. Journal of Jlilin University:Earth Science Edition, 2020, 50(2):465-479.
|
[7] |
宋运红, 张哲寰, 杨凤超, 等. 黑龙江海伦地区垦殖前后典型黑土剖面主要养分元素垂直分布特征[J]. 地质与资源, 2020, 26(6):543-549.
|
[7] |
Song Y H, Liu Z K, Yang F C, et al. Vertical distribution characteristics of main nutrient elements in typical black soil profile before and after reclamation in Helun Area,Heilongjiang Province[J]. Geology and Resources, 2020, 26(6):543-549.
|
[8] |
Song Y H, Dai H M, Yang F C, et al. Temporal and spatial change of soil organic matter and pH in cultivated land of the Songliao Plain in Northeast China during the past 35 years[J]. Acta Geologica Sinica:English Edition, 2019, 93(S1):142-143.
|
[9] |
史文娇, 汪景宽, 魏丹, 等. 黑龙江省南部黑土区微量元素空间变异及影响因子——以双城市为例[J]. 土壤学报, 2009, 46(2):342-347.
|
[9] |
Shi W J, Wang J K, Wei D, et al. Spatial variability of soil trace elements in black soil region of south Heilongjiang province and its affecting factors:A case study of Shuangcheng city[J]. Acta pedologica sinica, 2009, 46(2):342-347.
|
[10] |
贾树海, 张佳楠, 张玉玲, 等. 东北黑土区旱田改稻田后土壤有机碳、全氮的变化特征[J]. 中国农业科学, 2017, 50(7):1252-1262.
|
[10] |
Jia S H, Zhang J N, Zhang Y L, et al. Changes of the characteristics of soil organic carbon and total nitrogen after conversation from upland to paddy field in black soil region of Northeast China[J]. Scientia Agricultura Sinica, 2017, 50(7):1252-1262.
|
[11] |
韩晓增, 李娜. 中国东北黑土地研究进展与展望[J]. 地理科学, 2018, 38(7):1032-1041.
|
[11] |
Han X Z, Li N. Research progress of black soil in Northeast China[J]. Scientia Geographica Sinica, 2018, 38(7):1032-1041.
|
[12] |
崔明, 张旭东, 蔡强国, 等. 东北典型黑土区气候、地貌演化与黑土发育关系[J]. 地理研究, 2008, 27(3):527-535.
|
[12] |
Cui M, Zhang X D, Cai Q G, et al. Relationship between black soil development and climate change and geomorphological evolution in Northeast China[J]. Geographical Research, 2008, 27(3):527-535.
|
[13] |
綦琳, 乔彦松, 王燕, 等. 南京下蜀土的地球化学特征及其物源指示意义[J]. 第四纪研究, 2020, 40(1):190-202.
|
[13] |
Qi L, Qiao Y S, Wang Y, et al. Geochemical characteristics of the Xiashu loess-palaeosol sequence in Nanjing and their implicationa for provence[J]. Quaternary Sciences, 2020, 40(1):190-202.
|
[14] |
陈立业, 张珂, 傅建利, 等. 邙山黄土L5以来的常量元素地球化学特征及其对物源的指示意义[J]. 第四纪研究, 2017, 37(6):1293-1308.
|
[14] |
Chen L Y, Zhang K, Fu J L, et al. Major element geochemical characteristics of Mangshan loess since L5 and its implications for provenance[J]. Quaternary Sciences, 2017, 37(6):1293-1308.
|
[15] |
Hao Q Z, Guo Z T, Qiao Y S, et al. Geochemical evidence for the provenance of Middle Pleistocene loess deposits in Southern China[J]. Quaternary Science Reviews, 2010, 29(23/24):3317-3326.
|
[16] |
Guan H C, Zhu C, Zhu T X, et al. Grain size,magnetic susceptibility and geochemical characteristics of the loess in the Chaohu Lake basin: Implications for the origin,palaeoclimatic change and provenance[J]. Journal of Asian Earth Sciences, 2016, 117: 170-183.
|
[17] |
Li Y, Song Y G, Chen X L, et al. Geochemical composition of Tajikistan loess and its provenance implications[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2016, 446: 186-194.
|
[18] |
Zhang L, Qin X G, Liu J Q, et al. Geochemistry of sediments from the Huaibei Plain (East China):Implications for provenance,weathering,and invasion of the Yellow River into the Huaihe River[J]. Journal of Asian Earth Sciences, 2016, 121:72-83.
|
[19] |
吴鹏, 谢远云, 康春国, 等. 哈尔滨荒山黄土的成因——粒度、地球化学、磁化率、沉积和地貌特征的整合记录[J]. 地球学报, 2020, 41(3):420-430.
|
[19] |
Wu P, Xie Y Y, Kang C G, et al. The genesis of Huangshan loess in Harbin: Integrated evidence from grain size,geochemistry,magnetization,sedimentation and landform[J]. Acta Geoscientica Sinica, 2020, 41(3):420-430.
|
[20] |
陈骏, 季峻峰, 仇纲, 等. 陕西洛川黄土化学风化程度的地球化学研究[J]. 中国科学:地球科学, 1997, 27(6):531-536.
|
[20] |
Chen J, Ji J F, Chou G, et al. Geochemical study on chemical weathering degree of loess in Luochuan,Shaanxi Province[J]. Science in China(Series D):Earth Sciences, 1997, 27(6):531-536.
|
[21] |
Chen Y Y, Li X S, Han Z Y, et al. Chemical weathering intensity and element migration features of the Xiashu loess profile in Zhenjiang,Jiangsu Province[J]. Journal of Geographical Sciences, 2008, 18(3):341-352.doi:10.1007/s11442-008-0341-9.
|
[22] |
陈旸, 陈骏, 刘连文. 甘肃西峰晚第三纪红粘土的化学组成及化学风化特征[J]. 地质力学学报, 2001, 7(2):167-175.
|
[22] |
Chen Y, Chen J, Liu L W. Chemical composition and characterization of chemical weathering of late tertiary red clay in Xifeng,Gansu Province[J]. Journal of Geomechanics, 2001, 7(2):167-175.
|
[23] |
毛欣, 刘林敬, 李长安, 等. 丰宁黄土—古土壤剖面常量元素地球化学特征[J]. 地球科学, 2017, 42(10):1750-1759.
|
[23] |
Mao X, Liu L J, Li C A, et al. Elemental composition features of loess-paleosol profile in Fengning,Hebei Provinc[J]. Earth Science, 2017, 42(10):1750-1759.
|
[24] |
McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2):295-303.
|
[25] |
韩晓萌, 戴慧敏, 梁帅, 等. 黑龙江省拜泉地区典型黑土剖面元素地球化学特征及其环境指示意义[J]. 地质与资源, 2020, 29(6):556-563.
|
[25] |
Han X M, Dai H M, Liang S, et al. Elemental geochemistry characteristics and environmental indication of typical black soil profile in Baiquan Area,Heilongjiang Province[J]. Geology and Resources, 2020, 29(6):556-563.
|
[26] |
王攀, 宁凯, 石迎春, 等. 吴起全新世土壤剖面常量元素地球化学特征[J]. 土壤通报, 2019, 50(6):1261-1268.
|
[26] |
Wang P, Ning K, Shi Y C, et al. Geochemical characteristics of major elements of holocene soil from Wuqi,Shaanxi Province[J]. Chinese Journal of Soil Science, 2019, 50(6): 1261-1268.
|
[27] |
徐树建, 倪志超, 丁新潮. 山东平阴黄土剖面常量元素地球化学特征[J]. 矿物岩石地球化学通报, 2016, 35(2):353-359.
|
[27] |
Xu S J, Ni Z C, Ding X C. Geochemical characteristics of major elements of the Pingyin loess in Shandong Province[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2016, 35(2):353-359.
|
[28] |
Blanca B, Maria J M, Constanza F N, et al. Geochemistry of precambrian and paleozoic siliciclastic rocks from the iberian range(NE Spain):Implications for source-area weathering,sorting,provenance,and tectonic setting[J]. Chemical Geology, 2000, 168(1):135-150.doi:10.1016/S0009-2541(00)00192-3.
|
[29] |
文启忠. 中国黄土地球化学[M]. 北京: 科学出版社, 1989:71-133.
|
[29] |
Wen Q Z. Loess geochemistry in China[M]. Beijing: Science Press, 1989:71-133.
|
[30] |
李欢, 黄勇, 张沁瑞, 等. 北京平原区土壤地球化学特征及影响因素分析[J]. 物探与化探, 2021, 45(2):502-516.
|
[30] |
Li H, Huang Y, Zhang Q R, et al. Soil geochemical characteristics and influencing factors in Beijing Plain[J]. Geophysical and Geochemical Exploration, 2021, 45(2):502-516.
|
[31] |
刘银飞, 孙彬彬, 贺灵, 等. 福建龙海土壤垂向剖面元素分布特征[J]. 物探与化探, 2016, 40(4): 713-721.
|
[31] |
Liu Y F, Sun B B, H L, et al. Distribution characteristics of elements in vertical soil profile in Longhai,Fujian province[J]. Geophysical and Geochemical Exploration, 2016, 40(4): 713-721.
|
[32] |
Gallet S, Jahn B, Torii M. Geochemical characterizati0n of the Luochuan loess paleosol sequence,China,and paleoclimatic implications[J]. Chemical Geology, 1996, 133(14):67-88.
|
[33] |
Chen J, An Z S, Liu L W, et al. Variations in chemical compositions of the eolian dust in Chinese Loess Plateau over past 2.5Ma and chemical weathering in the Asian inland[J]. Science in China (Series D):Earth Sciences, 2001, 44(5):403-413.
|
[34] |
顾兆炎, 丁仲礼, 熊尚发, 等. 灵台红粘土和黄土—古土壤序列的地球化学演化[J]. 第四纪研究, 1999, 19(4):357-365.
|
[34] |
Gu Z Y, Ding Z L, Xiong S F, et al. A seven million geochemical record from Chinese red-clay and loess-paleosol sequence:Weathering and erosion in northwestern China[J]. Quaternary sciences, 1999, 19(4):357-365.
|
[35] |
Yang L H, Zhou J, Lai Z P, et al. Lateglacial and Holocene dune evolution in the Horqin dunefield of northeastern China based on luminescence dating[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2010, 296:44-51.
|
[36] |
Peng S Z, Guo Z T. Geochemical indicator of original eolian grain size and implications on winter monsoon evolution[J]. Science in China (Series D):Earth Sciences, 2001, 44(1): 261-266.
|
[37] |
Xiao J L, Porter S C, An Z S, et al. Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of Central China during the last 130,000 yr[J]. Quaternary Research, 1995, 43(1):22-29.
|
[38] |
An Z S, Porter S C. Millennia1 scale climatic oscillations during the last interglaciation in Central China[J]. Geology, 1997, 25(7):603-606.
|
[39] |
Chen J, Li G. Geochemical studies on the source region of asian dust[J]. Science China Earth Sciences, 2011, 54(9):1279-1301.doi:10.1007/s11430-011-4269-z.
|
[1] |
ZHENG Xu-Ying, XU Ke-Wei, GU Lei, WANG Guo-Jian, LI Guang-Zhi, GUO Jia-Qi, ZOU Yu, BORJIGIN Tenger. Distribution of microorganisms in the typical geothermal field environment and its significance for geothermal exploration[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1127-1136. |
[2] |
SONG Wei-Fang, LIU Jian-Zhong, WU Pan, LI Jun-Hai, WANG Ze-Peng, YANG Cheng-Fu, TAN Qin-Ping, WANG Da-Fu. A successful application of the tectono-geochemistry weak information extraction method in the prospecting of Carlin-type gold deposits in southwestern Guizhou Province[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1338-1348. |
|
|
|
|