|
|
Application of the opposing-coils transient electromagnetic method in detection of urban shallow cavities |
WANG Liang1( ), LONG Xia1, WANG Ting-Ting2, XI Zhen-Zhu2, CHEN Xing-Pen1, ZHONG Ming-Feng2, DONG Zhi-Qiang1 |
1. Hunan 5D Geosciences Co. Ltd., Changsha 410083, China 2. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China |
|
|
Abstract Quickly and efficiently identifying the hidden dangers inducing ground collapse in cities are greatly significant for urban construction, disaster protection, and protection of people's properties. In this study, the urban shallow ground collapse was classified into cavities caused by dissolution, disorderly drainage of groundwater, and old civil air defense works. Through forward calculations, this study analyzed the response laws of the geological models of the three types of cavities using the opposing-coils transient electromagnetic method (OCTEM), as well as the various characteristics of attenuation curves of the models under high resistance and low resistance overburden strata. Moreover, this study investigated the electrical characteristics of the geological models of the three types of cavities using the rate of change in the transient electromagnetic responses of rocks. The forward results are as follows. Compared with the surrounding rocks, both the models of cavities caused by dissolution and disorderly drainage of groundwater showed low resistance characteristics, while the model of cavities caused by civil air defense works showed high resistance characteristics. The rates of change in the transient electromagnetic responses of the three models show that the opposing-coils technology has a good ability to identify the hidden dangers inducing all kinds of cavities. The application results of the OCTEM to the detection of three types of cavities in areas such as Kunming and Zhengzhou show that this method is effective for the detection of urban shallow cavities.
|
Received: 24 August 2021
Published: 03 January 2023
|
|
|
|
|
|
OCTEM device Schematic
|
|
Cavity Model Schematic diagram
|
模型 编号 | 空洞大小 (m×m) | 空洞 类型 | L/m | ρ覆盖层/ (Ω·m) | ρ背景/ (Ω·m) | 模型0 | 0×0 | 无 | 无 | 100/1000 | 300 | 模型1 | 2.5×2.5 | 溶蚀型 | 2.5 | 100 | 300 | 模型2 | 2.5×2.5 | 土洞 | 0.5 | 100 | 300 | 模型3 | 2.5×2.5 | 人防空洞 | 0.5 | 100 | 300 | 模型4 | 2.5×2.5 | 溶蚀型 | 2.5 | 1000 | 300 | 模型5 | 2.5×2.5 | 土洞 | 0.5 | 1000 | 300 | 模型6 | 2.5×2.5 | 人防空洞 | 0.5 | 1000 | 300 |
|
Model parameters to be calculated
|
|
Response of models under 100 Ω·m overlay
|
|
The m changes of models under 100 Ω·m overlay
|
|
Response of models under overlay changes
|
|
Inversion of karst detective in Kunming subway
|
|
Detection and inversion results of a road collapse in Zhengzhou
|
|
The outcrop of the air-raid shelter (a) and the OCTEM curve (b)
|
|
Inversion of resistivity profile by OCTEM method in air-raid shelter
|
[1] |
陈灿华, 廖秀英, 陈绍裘. 高速公路不同地层路基中岩溶洞穴的探测[J]. 中南大学学报:自然科学版, 2004, 35(6):1014-1018.
|
[1] |
Chen C H, Liao X Y, Chen S Q. Explore karst in different strata of highway roadbed[J]. Chinese J. Journal of Central South University:Science and Technology, 2004, 35(6): 1014-1018.
|
[2] |
袁永才, 李术才, 李利平, 等. 尚家湾强岩溶隧道突水突泥伴生灾害源综合分析[J]. 中南大学学报:自然科学版, 2017, 48(1):203-211.
|
[2] |
Yuan Y C, Li S C, Li L P, et al. Comprehensive analysis on disaster associated by water inrush and mud gushing in Shangjiawan karst tunnel[J]. Chinese J. Journal of Central South University:Science and Technology, 2017, 48(1): 203-211.
|
[3] |
Konstantinos C, Valérie P, Roger G, et al. Contribution of geophysical methods to karst-system exploration: An overview[J]. Hydrogeology Journal, 2011, 19(6):1169-1180.
|
[4] |
Ŝumanovac F, Weisser M. Evaluation of resistivity and seismic methods for hydrogeological mapping in karst terrains[J]. Journal of Applied Geophysics, 2001, 47(1):13-28.
|
[5] |
李才明, 王良书, 徐鸣洁, 等. 基于小波能谱分析的岩溶区探地雷达目标识别[J]. 地球物理学报, 2006, 49(5):1499-1504.
|
[5] |
Li C M, Wang L S, Xu M J, et al. Objects recognition of ground penetrating radar in karst regions using wavelet energy spectrum analysis[J]. Chinese Journal Geophysics, 2006, 49(5): 1499-1504.
|
[6] |
孙怀凤, 李凯, 陈儒军, 等. 浅层岩溶瞬变电磁响应规律试验研究[J]. 岩石力学与工程学报, 2018, 37(3):652-661.
|
[6] |
Sun H F, Li K, Chen R J, et al. Experimental study on transient electromagnetic responses to shallow karst[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 652-661.
|
[7] |
牛之琏. 时间域电磁法原理[M]. 长沙: 中南大学出版社, 2007:69-70.
|
[7] |
Niu Z L. Theory of time domain electromagnetic[M]. Changsha: Zhongnan University Press, 2007:69-70.
|
[8] |
李貅. 瞬变电磁测深的理论与应用[M]. 西安: 陕西科学技术出版社, 2002:5-8.
|
[8] |
Li X. Theory and application of transient electromagnetic sounding[M]. Xi’an: Shanxi Science and Technology Press, 2002:5-8.
|
[9] |
席振铢, 刘剑, 龙霞, 等. 瞬变电磁法三分量测量方法研究[J]. 中南大学学报:自然科学版, 2010, 41(1):272-276.
|
[9] |
Xi Z Z, Liu J, Long X, et al. Three-component measurement intransient electromagnetic method[J]. Journal of Central South University: Science and Technology, 2010, 41(1): 272-276.
|
[10] |
Nabighian M N, Macnae J C. Time domain electromagnetic prospecting methods: Electromagnetic methods in applied geophysics[M]. Houston: Society of Exploration Geophysicist, 1988:427-520.
|
[11] |
Xi Z Z, Long X, Huang L, et al. Opposing-coils transient electromagnetic method focused near-surface resolution[J]. Geophysics, 2019, 81(5): E279-E285.
|
[12] |
席振铢, 龙霞, 周胜, 等. 基于等值反磁通原理的浅层瞬变电磁法[J]. 地球物理学报, 2016, 59(9):3428-3435.
|
[12] |
Xi Z Z, Long X, Zhou S, et al. Opposing coils transient electromagnetic method for shallow subsurface detection[J]. Chinese Journal Geophysics, 2016, 59(9): 3428-3435.
|
[13] |
席振铢, 宋刚, 周胜, 等. 一种瞬变电磁测量装置及方法[P]. 中国专利, 201410092714.X, 2014.
|
[13] |
Xi Z Z, Song G, Zhou S, et al. A measure method and device of transient electromagnetic method[P]. Patent in Chinese, 201410092714.X, 2014.
|
[14] |
李建平. 等值反磁通瞬变电磁法在高山隧道施工选线中的应用[J]. 兰州理工大学学报, 2018(1):143-147.
|
[14] |
Li J P. Application of opposing coils electromagnetometry in route selection for alpine tunnel construction[J]. Journal of Lanzhou University of Technology, 2018(1): 143-147.
|
[15] |
赖刘保, 陈昌彦, 张辉, 等. 浅层瞬变电磁法在城市道路地下病害检测中的应用[J]. 地球物理学进展, 2016, 31(6):2743-2746.
|
[15] |
Lai L B, Chen C Y, Zhang H, et al. Application of shallow transient electromagnetic method in the detection of city road disease[J]. Progress in Geophysics, 2016, 31(6): 2743-2746.
|
[16] |
王银, 席振铢, 蒋欢, 等. 等值反磁通瞬变电磁法在探测岩溶病害中的应用[J]. 物探与化探, 2017, 41(2):360-363.
|
[16] |
Wang Y, Xi Z Z, Jiang H, et al. The application research on the detection of karst disease of airport runway based on OCTEM[J]. Geophysical and Geochemical Exploration, 2017, 41(2): 360-363.
|
[17] |
Coggon J H. Electromagnetic and electrical modeling by the finite element method[J]. Geophysics, 1970, 36: 132-153.
|
[18] |
陈丹丹. 瞬变电磁法三维正演研究[D]. 北京: 中国地质大学(北京), 2008.
|
[18] |
Chen D D. Study of three-dimensional forward of TEM[D]. Beijing: China University of Geosciences (Beijing), 2008.
|
[19] |
李贺. 直接时间域矢量有限元瞬变电磁三维正演模拟[D]. 西安: 长安大学, 2016.
|
[19] |
Li H. Three-dimensional transient electromagnetic forward modeling in the direct time-domain by vector finite element[D]. Xi'an: Chang'an University, 2016.
|
[20] |
余翔, 王绪本, 李新均, 等. 时域瞬变电磁法三维有限差分正演技术研究[J]. 地球物理学报, 2017, 60(2):810-819.
|
[20] |
Yu X, Wang X B, Li X J, et al. Three-dimensional finite difference forward modeling of the transient electromagnetic method in the time domain[J]. Chinese Journal Geophysics, 2017, 60(2): 810-819.
|
[21] |
李瑞雪, 王鹤, 席振铢, 等. 深海热液硫化物矿体3D瞬变电磁正演[J]. 地球物理学报, 2016, 59(12):4505-4512.
|
[21] |
Li R X, Wang H, Xi Z Z, et al. The 3D transient electromagnetic forward modeling of volcanogenic massive sulfide ore deposits[J]. Chinese Journal Geophysics, 2016, 59(12): 4505-4512.
|
[22] |
孙怀凤, 程铭, 吴启龙, 等. 瞬变电磁三维FDTD正演多分辨网格方法[J]. 地球物理学报, 2018, 61(12):374-382.
|
[22] |
Sun H F, Cheng M, Wu Q L, et al. A multi-scale grid scheme in three-dimensional transient electromagnetic modeling using FDTD[J]. Chinese Journal Geophysics, 2018, 61(12): 374-382.
|
[23] |
熊彬, 罗延钟. 电导率分块均匀的瞬变电磁2.5维有限元数值模拟[J]. 地球物理学报, 2006, 49(2):590-597.
|
[23] |
Xiong B, Luo Y Z. Finite element modeling of 2.5D TEM with block homogeneous conductivity[J]. Chinese Journal Geophysics, 2006, 49(2):590-597.
|
[24] |
Li W D. Modeling and inversion of time domain electromagnetic data[D]. SLC: The University of Utah, 2002.
|
[25] |
Key K. MARE2DEM: A 2-D inversion code for controlled-source electromagnetic and magnetotelluric data[J]. Geophys. J. Int., 2016, 207: 571-588.
|
[1] |
HE Sheng, WANG Wan-Ping, DONG Gao-Feng, NAN Xiu-Jia, WEI Feng-Feng, BAI Yong-Yong. Application of the opposing-coils transient electromagnetic method in urban geological surveys[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1379-1386. |
[2] |
REN Xi-Rong, LI Xin, ZHOU Zhi-Jie. Application of the opposing coils transient electromagnetic method in investigation of mined-out areas of a gold deposit[J]. Geophysical and Geochemical Exploration, 2023, 47(2): 540-546. |
|
|
|
|