|
|
Wide-angle reflection acquisition technology for ultradeep reservoirs based on large-scale low-frequency vibroseis |
SU Hai1,2(), QIAO Jin1,2, ZHANG Zhong-Nan3, DU Zhong-Dong4, ZHANG Yong-Hao1,2, ZHAO Hui5, LI Ai-Rong1,2 |
1. School of Earth Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China 2. Key Laboratory of Hydrocarbon Accumulation of Shaanxi Province, Xi'an 710065, China 3. The Seventh District of the Second Gas Production Plant in Yuyang District, Yulin City, Shaanxi Province,Yulin 719054,Cina 4. Changqing Geophysical Department,BGP Inc,CNPC, Xi'an 710016, China 5. The Third Treatment Plant of the Third Gas Production Plant of Changqing Oilfield, Xi'an 710018,China |
|
|
Abstract With the intensification of hydrocarbon exploration in ultradeep reservoirs, conventional seismic exploration methods are no longer applicable to areas with complex surface structures and underground geological structures because they are difficult to acquire effective reflection information with high signal-to-noise ratio, the imaging effects of seismic data are poor, seismic profiles fail to clearly present the geological structures of study areas. Based on the large-scale low-frequency vibroseis excitation technology, the field acquisition requirements, and geological tasks, this study adopted a high-density two-dimensional wide-angle reflection seismic observation system to collect seismic data. This study selected the optimal field acquisition parameters suitable for the study area through numerical simulation of wide-angle seismic waves and field tests. As indicated by the results of this study, the wide-angle reflection acquisition technology for ultradeep reservoirs based on large-scale low-frequency vibroseis can acquire weakly reflected seismic signals at locations with far offset and strong energy, especially the deep low-frequency information, thus effectively improving the signal-to-noise ratio of seismic data. Compared with conventional seismic stacked sections, the wide-angle reflection seismic stacked sections have significantly improved quality, continuous events, clearly visible structural parts, and encouraging seismic imaging effects. The field production practices dominate that the wide-angle reflection seismic exploration technology can be applied to ultradeep hydrocarbon exploration.
|
Received: 17 March 2022
Published: 27 April 2023
|
|
|
|
|
|
Optimal scanning frequency band of low frequency vibroseis
|
|
Optimal setiing of low frequency vibroseis
|
|
Optimal scanning length of low frequency vibroseis
|
|
Wide-angle reflection geological model, target layer reflection coefficient analysis and energy distribution chart of amplitude coefficient of simulated single shot record
|
|
Conventional exploration and wide-angle reflection single shot records and their spectrum analysis diagrams
|
|
Stacked profile comparison of wide-Angle reflection line and common line
|
[1] |
胡文瑞, 鲍敬伟, 胡滨. 全球油气勘探进展与趋势[J]. 石油勘探与开发, 2013, 40(4):409-413.
|
[1] |
Hu W R, Bao J W, Hu B. Trend and progress in global oil and gas exploration[J]. Petroleum Exploration and Development, 2013, 40(4):409-413.
|
[2] |
Goloshubin, Gennady M, Korneev. Seismic low-frequency effects from oil-saturated reservoir zones[C]// Salt Lake City: SEG International Exposition and Annual Meeting, 2002.
|
[3] |
Castagna J P, Sun S, Siegfried R W. Instantaneous spectral analysis:Detection of low-frequency shadows associated with hydrocarbons[J]. The Leading Edge, 2003, 22(2):120-127.
|
[4] |
谭晔, 罗丹. 陶知非潜心打造勘探利器[J]. 中国石油石化, 2020(18):72-74.
|
[4] |
Tan H, Luo D. Tao Z F to creat exploration weapon[J]. China Petrochem, 2020(18):72-74.
|
[5] |
周锦钟, 张金海, 牛全兵, 等. 柴达木盆地尖顶山地区低频可控震源“两宽一高”地震资料处理关键技术应用研究[J]. 物探与化探, 2020, 44(2):313-320.
|
[5] |
Zhou J Z, Zhang J H, Niu Q B, et al. Research on the application of key technologies for low-frequency vibroseis "two widths and one height" seismic data processing in Jiandingshan area of Qaidam Basin[J]. Geophysical and Geochemical Exploration, 2020, 44(2):313-320.
|
[6] |
杨金华, 张焕芝. 非常规、深层、海洋油气勘探开发技术展望[J]. 世界石油工业, 2020, 27(6):20-26.
|
[6] |
Yang J H, Zhang H Z. Outlook on the exploration and development technologies of unconventional,deep and offshore oil and gas[J]. World Petroleum Industry, 2020, 27(6):20-26.
|
[7] |
Richards T C. Wide angle reflections and their application to fingding limestone structures in the footills of wetern Canada[J]. Geophysics, 1960, 25(2):385-407.
|
[8] |
杨智超, 张孟, 敬龙江, 等. 广角地震反射在四川盆地超深储层勘探中的应用[J]. 天然气勘探与开发, 2020, 43(4):62-68.
|
[8] |
Yang Z C, Zhang M, Jing L J, et al. Application of wide-angle seismic reflection to exploration of ultra deep reservoirs in Sichuan Basin[J]. Natural Gas Exploration and Development, 2020, 43(4):62-68.
|
[9] |
张岩, 段孟川, 钟海, 等. 塔里木盆地超深层广角地震勘探技术实例与分析[C]// 中国石油学会2019年物探技术研讨会论文集,石油地球物理勘探编辑部, 2019:1310-1313.
|
[9] |
Zhang Y, Duan M C, Zhong H, et al. Example and analysis of ultra-deep wide-angle seismic exploration technology in Tarim Basin[C]// Proceedings of 2019 Symposium on Geophysical Exploration Technology,China Petroleum Society,Editorial Department of Petroleum Geophysical Exploration, 2019:1310-1313.
|
[10] |
张军华, 张在金, 张彬彬, 等. 地震低频信号对关键处理环节的影响分析[J]. 石油地球物理勘探, 2016, 51(1):54-62,19.
|
[10] |
Zhang J H, Zhang Z J, Zhang B B, et al. Low frequency signal influences on key seismic data processing procedures[J]. Oil Geophysical Prospecting, 2016, 51(1):54-62,19.
|
[11] |
武泗海, 赵虎, 尹成, 等. 广角地震反射特征及反演研究[J]. 石油地球物理勘探, 2017, 52(5):1005-1015,880-881.
|
[11] |
Wu S H, Zhao H, Ying C, et al. Wide-angle seismic reflection characteristics and inversion[J]. Oil Geophysical Prospecting, 2017, 52(5):1005-1015,880-881.
|
[12] |
杨威, 周刚, 李海英, 等. 碳酸盐岩深层走滑断裂成像技术[J]. 新疆石油地质, 2021, 42(2):246-252.
|
[12] |
Yang W, Zhou G, Li H Y, et al. Seismic imaging technology for deep strike slip faults in carbonate reservoirs[J]. Xinjiang Petroleum Geology, 2021, 42(2):246-252.
|
[13] |
沈媛媛, 郑恭明. 可控震源线性扫描信号仿真分析[J]. 物探装备, 2011, 21(4):211-214.
|
[13] |
Shen Y Y, Zheng G M. Simulation analysis of vibrator linear sweep signal[J]. Equipment for Geophysical Prospecting, 2011, 21(4):211-214.
|
[14] |
王华忠. 客户定制反射子波的可控震源地震勘探方法[J]. 石油物探, 2020, 59(5):683-694.
|
[14] |
Wang H Z. Vibroseis seismic exploration with customized wavelet[J]. Geophysical Prospecting for Petroleum, 2020, 59(5):683-694.
|
[15] |
谢兴隆, 马雪梅, 龙慧, 等. 基于可控震源的中浅部地震勘探参数选择[J]. 物探与化探, 2021, 45(4):1004-1013.
|
[15] |
Xie X L, Ma X M, Long H, et al. Parameter selection of seismic exploration in middle and shallow areas based on vibroseis[J]. Geophysical and Geochemical Exploration, 2021, 45(4):1004-1013.
|
[16] |
邱庆良, 曹乃文, 白烨. 可控震源激发参数优选及应用效果[J]. 物探与化探, 2021, 45(3):686-691.
|
[16] |
Qiu Q L, Cao N W, Bai Y. Optimization of vibroseis excitation parameter and its application effect[J]. Geophysical and Geochemical Exploration, 2021, 45(3):686-691.
|
[17] |
周晓冀, 杨智超, 石勇, 等. 川西地区超深层广角反射地震勘探技术研究与应用[C]// 第31届全国天然气学术年会(2019)论文集, 2019:138-143.
|
[17] |
Zhou X Y, Yang Z C, Shi Y, et al. Research and application of ultra-deep wide-angle reflection seismic exploration technology in western Sichuan[C]// Proceedings of the 31st National Natural Gas Academic Annual Conference (2019), 2019:138-143.
|
[18] |
徐文君, 於文辉, 胡中平. 广角反射波的特征及正演模拟[J]. 石油地球物理勘探, 2006(4):390-395,492,356.
|
[18] |
Xu W J, Yu W H, Hu Z P. Feature and forward simulation of wide-angle Reflection[J]. Oil Geophysical Prospecting, 2006(4):390-395,492,356.
|
[19] |
倪宇东, 杜中东, 王彦铎, 等. 基于超深目的层的广角地震采集及处理技术[C]// 2018年中国地球科学联合学术年会论文集(四十三)——专题93: 超深层(油气)重磁电震勘探技术、专题94:深部预测方法, 2018:61-63.
|
[19] |
Ni Y D, Du Z D, Wang Y D, et al. Wide-angle seismic acquisition and processing technology based on ultra-deep target layer[C]// Proceedings of the 2018 China Geosciences Joint Academic Annual Conference (forty-three)-Topic 93:Ultra-deep (oil and gas) Gravity Magnetic Electroseismic Exploration Technology,Topic 94:Deep Prediction Methods, 2018:61-63.
|
[1] |
QIU Qing-Liang, CAO Nai-Wen, BAI Ye. Optimization of vibroseis excitation parameters and its application effect[J]. Geophysical and Geochemical Exploration, 2021, 45(3): 686-691. |
[2] |
Hua HUANG, Zhong-Sheng LI, Ge-Hui ZHENG, Da-lin WU, Zhong-Sheng WANG, Zi-Heng YUAN. Mechanism and effect analysis of vibroseis vehicle suppressing urban noise[J]. Geophysical and Geochemical Exploration, 2020, 44(4): 803-809. |
|
|
|
|