|
|
A processing method for seismic data consistency under complex surface conditions and its applications |
CHEN Chao-Qun1( ), DAI Hai-Tao1, GAO Qin1, CHEN Jun-Jie2, LUO Wen-Li1, WANG Zhi-Ru1 |
1. Changqing Branch of GRI,BGP,Xi'an 710021,China 2. Gas Field Development,PetroChina Changqing Oilfield Company,Xi'an 710016,China |
|
|
Abstract Located in the loess tableland area,the eastern Ordos Basin features criss-cross ravines and gullies and great topographic fluctuations.Its complex surface conditions and near-surface structures caused significantly different amplitudes,frequencies,and phases in the original seismic data of different regions.These differences are unrelated to the subsurface geological information and can easily lead to misinterpretation.Therefore,there is an urgent need to develop a processing method for seismic data consistency according to the characteristics of seismic data in the study area,aiming to improve the fidelity of seismic data.Based on the summary of the current consistency processing methods,this study built a new consistency processing flow for seismic data under complex surface conditions.By innovating surface consistent amplitude compensation,this study employed the dual-domain near-surface Q-absorption compensation for the first time to broaden the frequency band and improve the amplitude and frequency consistency of seismic data collected across gullies and tablelands.In addition,this study applied the surface consistent deconvolution of Yu's wavelet to attenuate the low-frequency noise and broaden the effective signal frequency band,improving the signal-to-noise ratio,resolution,and wavelet consistency of seismic data.The actual application verifies that the method used in this study is feasible and effective and has a high popularization value.
|
Received: 23 June 2022
Published: 11 October 2023
|
|
|
|
|
|
Original single shot,amplitude statistics,single shot autocorrelation and spectrum in the gully and tableland connection area a—original single shot;b—single shot amplitude statistics(red frame of fig.a in the ditch,blue frame of fig.a in the loess plateau);c—single shot autocorrelation(black frame in fig.a);d—spectrum in the ditch(red frame in fig.a);e—spectrum in the loess plateau(blue frame in fig.a)
|
|
RMS amplitude(a),single shot statistical autocorrelation(b), original stack profile(c), tableland(d) and gully(e) spectrum of gully and tableland connecting line
|
|
Calculation process of Q-V fitting relationship a—first arrival top flattening of the uphole survey in double hole;b—spectrum of the first arrival;c—Q-V pair and Q-V fitting relationship
|
|
Near-surface velocity model of tomographic inversion and corresponding surface Q field a—near-surface velocity model of tomographic inversion;b—velocity model corresponding surface Q field
|
|
Seismic data consistency processing flow under complex surface conditions a—conventional consistency processing flow ;b—Q absorption compensation processing flow based on dual-domain near-earth surface
|
|
Single shot before and after surface consistency amplitude compensation in the gully and tableland connection area a—before compensation;b—compensation by traditional method;c—compensation by this method
|
|
Comparison of single shot statistical autocorrelation and stack profile before(a) and after(b) Q absorption compensation of dual-domain near-ground surface
|
|
Comparison of single shot statistical autocorrelation and stack profile after different deconvolution a—surface consistent deconvolution;b—Yu wavelet deconvolution
|
|
Comparison of processing effect with different consistency processing methods a—RMS amplitude,shot statistical autocorrelation and pure wave profile after consistency processing with conventional method;b—RMS amplitude,shot statistical autocorrelation and pure wave profile after consistency processing withthis method
|
|
Comparison of achievement profile with different consistency processing methods a—conventional consistency processing;b—consistency processing by this method
|
[1] |
初海红, 裴江云, 张丹丹, 等. 保幅宽频配套地震资料处理技术研究[C]// 中国石油学会2019年物探技术研讨会论文集, 2019:136-139.
|
[1] |
Chu H H, Pei J Y, Zhang D D, et al. Supporting technology research on amplitude preserving and broadband processing of seismic data processing[C]// Geophysical Technology Seminar of China Petroleum Society, 2019:136-139.
|
[2] |
宋玉龙. 滩浅海地区地震勘探存在问题及其解决办法[J]. 石油物探, 2005, 44(4):343-347.
|
[2] |
Song Y L. Problems and solutions of seismic exploration in neritic area[J]. Geophysical Prospecting for Petroleum, 2005, 44(4):343-347.
|
[3] |
程金星, 朱立华, 杨长春, 等. 基于小波变换的三维地震资料拼接方法[J]. 石油地球物理勘探, 2004, 39(4):406-408.
|
[3] |
Cheng J X, Zhu L H, Yang C C, et al. Putting 3D seismic data together based on wavelet transform[J]. Oil Geophysical Prospecting, 2004, 39(4):406-408.
|
[4] |
王西文, 周立宏. 三维地震资料拼接中的地震子波处理[J]. 石油物探, 2002, 41(4):448-451,455.
|
[4] |
Wang X W, Zhou L H. Wavelet transform used in the concatenation of 3-D seismic data sets[J]. Geophysical Prospecting for Petroleum, 2002, 41(4):448-451,455.
|
[5] |
王元波. 三维地震处理连片拼接技术[J]. 大庆石油地质与开发, 2001, 20(3):67-68.
|
[5] |
Wang Y B. Connecting technique of 3D seismic process[J]. Petroleum Geology and Oilfield Development in Daqing, 2001, 20(3):67-68.
|
[6] |
邬达理, 郑伟建, 金晓雷, 等. 复杂三维地震联片处理技术及其应用实例分析[J]. 石油物探, 2001, 40(1):9-19.
|
[6] |
Wu D L, Zheng W J, Jin X L, et al. Unified seismic data processing of multiple 3D surveys and case study[J]. Geophysical Prospecting for Petroleum, 2001, 40(1):9-19.
|
[7] |
芮拥军. 地震资料处理中相对保幅性讨论[J]. 物探与化探, 2011, 35(3):371-374.
|
[7] |
Rui Y J. An analysis of relative amplitude-preservation in seismic data processing[J]. Geophysical and Geochemical Exploration, 2011, 35(3):371-374.
|
[8] |
朱志勇, 刘启凤. 江陵凹陷三维连片地震资料一致性处理实践[J]. 江汉石油职工大学学报, 2020, 33(4):4-7.
|
[8] |
Zhu Z Y, Liu Q F. Consistency processing of 3D continuous seismic data among the blocks in Jiangling depression[J]. Journal of Jianghan Petroleum Workers University, 2020, 33(4):4-7.
|
[9] |
陈超群, 高秦, 何争光, 等. 鄂尔多斯盆地西南部巨厚黄土塬区非纵地震资料处理技术[J]. 煤田地质与勘探, 2017, 45(1):143-156.
|
[9] |
Chen C Q, Gao Q, He Z G, et al. The off-line seismic exploration and its application in huge-thick loess area in Erdos basin[J]. Coal Geology & Exploration, 2017, 45(1):143-156.
|
[10] |
蒋立, 陈勇, 肖艳玲, 等. 地表过渡带近地表Q补偿与地表一致性反褶积处理效果对比研究[J]. 石油物探, 2018, 57(6):870-877.
|
[10] |
Jiang L, Chen Y, Xiao Y L, et al. A comparison of near-surface Q compensation and surface-consistent deconvolution in the near-surface transition zone[J]. Geophysical Prospecting for Petroleum, 2018, 57(6):870-877.
|
[11] |
古发明, 童庆佳, 任超峰, 等. 微测井约束分步层析静校正技术在古峰庄地区的应用[J]. 地球物理学进展, 2020, 35(1):103-107.
|
[11] |
Gu F M, Tong Q J, Ren C F, et al. Application of the step tomographic static correction technique constrained by uphole survey in Gufengzhuang area[J]. Progress in Geophysics, 2020, 35(1):103-107.
|
[12] |
王一惠, 王小卫, 张涛, 等. 西部沙漠区中深层地震数据近地表Q补偿应用研究[J]. 石油物探, 2021, 60(6):944-953.
|
[12] |
Wang Y H, Wang X W, Zhang T, et al. Application of near-surface Q compensation for seismic data from a mid-depth layer in the western desert in China[J]. Geophysical Prospecting for Petroleum, 2021, 60(6):944-953.
|
[13] |
公亭, 王兆磊, 顾小弟, 等. 宽频地震资料处理配套技术[J]. 石油地球物理勘探, 2016, 51(3):457-466.
|
[13] |
Gong T, Wang Z L, Gu X D, et al. Broadband seismic data matching processing[J]. Oil Geophysical Prospecting, 2016, 51(3):457-466.
|
[14] |
蔡希玲. 俞氏子波在地震数据处理中的应用研究[J]. 石油地球物理勘探, 2000, 35(4):497-507.
|
[14] |
Cai X L. Application of Yu wavelet to seismic data processing[J]. Oil Geophysical Prospecting, 2000, 35(4):497-507.
|
[15] |
王珊, 于承业, 王云专, 等. 稳定有效的反Q滤波方法[J]. 物探与化探, 2009, 33(6):696-699.
|
[15] |
Wang S, Yu C Y, Wang Y Z, et al. Researches on stabilized and effective inverse Q filtering[J]. Geophysical and Geochemical Exploration, 2009, 33(6):696-699.
|
[16] |
邓儒炳, 阎建国, 陈琪, 等. 一种基于连续补偿函数的时变增益限反Q滤波方法[J]. 物探与化探, 2021, 45(3):702-711.
|
[16] |
Deng R B, Yan J G, Chen Q, et al. A new time-varying gain limits inverse Q filtering with the continuous compensation function[J]. Geophysical and Geochemical Exploration, 2021, 45(3):702-711.
|
[17] |
李金丽, 李振春, 管路平, 等. 地震波衰减及补偿方法[J]. 物探与化探, 2015, 39(3):456-465.
|
[17] |
Li J L, Li Z C, Guan L P, et al. The method of seismic attenuation and energy compensation[J]. Geophysical and Geochemical Exploration, 2015, 39(3):456-465.
|
[18] |
王正和, 崔永福, 向东. 井控处理中的真振幅恢复与Q补偿方法及应用[J]. 物探与化探, 2008, 32(4):434-437.
|
[18] |
Wang Z H, Cui Y F, Xiang D. The method and application of true amplitude recovery and Q compensation well control processing[J]. Geophysical and Geochemical Exploration, 2008, 32(4):434-437.
|
[19] |
杨振, 文鹏飞, 彭璐, 等. 基于高阶双谱的子波整形方法[J]. 物探与化探, 2015, 39(5):1027-1031.
|
[19] |
Yang Z, Wen P F, Peng L, et al. A method of wavelet shaping based on the high-order bispectrum[J]. Geophysical and Geochemical Exploration, 2015, 39(5):1027-1031.
|
[1] |
Wen-Zhong WANG, Hai-Chuan SUN, Yong-Liang LIU. A study on coalfield seismic exploration parameter selection in LA exploration of loess tableland[J]. Geophysical and Geochemical Exploration, 2018, 42(4): 689-696. |
[2] |
XIA Chang-Liang, WANG Yong-Ming, HU Hao, LI Hong-Xia, WANG Xiang-Chun. Static correction and its application to seismic data of loess tableland area[J]. Geophysical and Geochemical Exploration, 2018, 42(2): 339-346. |
|
|
|
|